
Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)
BP 6759 – 45067, University of Orléans, France

User Manual
(Manual v0.2, documenting ozziKs v0.3-beta, rev. 393)

Marco Benedetti
mabene@gmail.com

November 10, 2006

Contents
1 Introduction 3

1.1 Contact and feedback . 3

2 The ozziKs software 4
2.1 How to execute it . 4
2.2 Input/output behaviour . 5

3 Command-line options 7
3.1 Options for the “Inductive reconstruction” engine 7
3.2 Options for the “Certificate verification” engine 8
3.3 Options for the “Expression evaluation” engine 9
3.4 Options for the “Information dump” engine . 9
3.5 Other options . 10

4 Expressions over certificates and their evaluation 11
4.1 Simple direct expressions . 11
4.2 Compound direct expressions . 12
4.3 Inverse expressions. 13
4.4 Multiple expressions. 14

5 Batch mode 15
5.1 Order of processing . 15
5.2 Return values . 15
5.3 Timeouts . 15
5.4 Reporting . 16

6 Examples of usage 17
Example 1: Basic certificate reconstruction and verification 17
Example 2: How to dump more information . 18
Example 3: Partial certificates . 20
Example 4: “Don’t care” conditions . 20
Example 5: Batch processing . 22
Example 6: Evaluation of direct expressions . 23
Example 7: Evaluation of inverse expressions . 26

Appendix A: QBF certificates 30
A.1 Certificate representation . 31
A.2 Certificate verification . 33
A.3 Certificate construction . 34

Appendix B: Content and format of input and output files 35
B.1 Inference logs . 35
B.2 QBM certificates . 37
B.3 DOT certificates . 40

References 41

Copyright and License 42

2

1 Introduction
ozziKs is the implementation of an algorithm that:

1. builds a certificate of satisfiability C(F)—a.k.a. strategy or policy or quantified model—
for a given TRUE Quantified Boolean Formula F for which a suited inference log is avail-
able (at present, only the QBF solver sKizzo [4, 2] produces a suited log);

2. verifies C(F) against F , thus certifying in a solver-independent way the validity of F ;

3. evaluates user-provided expressions of various kind over C(F);

4. writes to file in different formats C(F) and/or the result of the evaluation of the above
mentioned expressions.

For more information on the creation, representation, and usage of certificates, see Appendix A.

As we mentioned, ozziKs is not designed as a stand-alone tool. It works in tandem with the QBF
solver sKizzo, in a two-step process that will be described in subsequent sections.
This manual is organized as follows:

• Section 2 gives details on the input/output behavior of the software, on its commandline
syntax, and on exit values.

• Section 3 lists the commandline options useful to customize the behavior of the software.

• Section 4 introduces syntax and semantics of expressions over certificates.

• Section 5 shows how to make the software process a set of instances instead of just one.

• Section 6 provides several examples of usage.

• Appendix A contains introductory notions about the representation, reconstruction, and
verification of QBF certificates.

• Appendix B provides details on the content and format of input and output files.

1.1 Contact and feedback
At present, ozziKs (version 0.3, revision 393) is in beta testing (check [1] for updates). Feedback
from users is welcome on both the certificate reconstructor and its documentation. Please send
an e-mail to

mabene@gmail.com

mentioning “ozziKs” in the subject in case you:

• are able to make the reconstructor crash under specific, reproducible circumstances;

• have problems building certificates for some “reasonbably-sized” instance you were able
to solve with sKizzo;

• find errors in the documentation;

• observe any unexpected behavior of the software;

• miss some feature you would like to see in future releases of the software;

• encounter any circumstance or are able to give any suggestion that could help to improve
ozziKs or its documentation.

3

2 The ozziKs software
The ozziKs software is currently distributed at [1] for three platforms:

• linux - i386, as a stand-alone statically linked executable;

• OS X, as a universal binary that runs natively on both Intel and PowerPC machines;

• win32, as a cygwin1 application (requires a cygwin installation or at least the cygwin1.dll
library).

These three versions are functionally equivalent, and no platform-related disctinction is made
through this manual.

2.1 How to execute it
To launch ozziKs, use the following syntax.

ozziKs [OPTS] (FILE|DIR) [TIMEOUT]

where we have to provide:

1. An optional list of space-separated options OPTS. Such options are used to modify the
reconstruction process and/or the input/output behavior of the program. They are discussed
in Section 3.

2. A mandatory FILE path or, alternatively, a path DIR to a directory, where:

(a) FILE, is the full name (possibly with a path) of an inference log file to be processed
(extension .sKizzo.log), or, alternatively, the full name (possibly with a path) of
a certificate (extension .qbm) to be verified.

(b) DIR is the root of a directory subtree which is to be recursively visited. When we
specify a directory as an entry point, the certifier works in batch mode. See Section 5.

3. An optional TIMEOUT (in seconds). When a timeout is given, ozziKs works for no longer
than the specified amount of time, then gives up (exit code 30, see below).

Possible exit values for the command—returned to the program that called ozziKs or to the shell
from which the certifier was launched—are:

10 on a successfully completed reconstruction yielding a valid certificate

20 on a successfully completed reconstruction yielding an invalid certificate

30 on timeout

-1 on unrecoverable internal error

-2 on commandline parse error

These return codes are only valid when a single log/certificate is given as argument. For the return
codes in batch mode see Section 5.2. For codes in expression-evaluation mode see Section 4.1.

1Cygwin is a Linux-like environment for Windows which acts as a Linux API emulation layer providing substantial
Linux API functionality from inside a win32 installation. For details see www.cygwin.com.

4

Inductive
reconstruction

Certificate
verification

Expression
evaluation

Information
dumping

QBF solver

QBF formula
"sample.qcnf"

QBM certificate
".qcnf.qbm"

complete/partial
certificate

".qbm" or ".dot"

Inverse
expression outcome
".qbm" or ".dot" or

".cnf"

QDIMACS
partial certificate

".qdc"

Certificate (internal rep.)

sKizzo ozziKs

P

A

R

S

E

R

Inference
LOG

opt: -hbdd; -var

opt: -check; -qbf

opt: -exp

opt: -dump

Direct/inverse
Expression

valid / invalid

Figure 1: The internal structure and the input/output behaviour of ozziKs.

2.2 Input/output behaviour
The overall input/output behaviour of the solver is depicted in Figure 1. The four engines that
constiute ozziKs have the following function and input/output behaviour:

Inductive reconstruction. Takes as input an inference log (produced by sKizzo during the eval-
uation of a true QBF F) and builds (an internal representation for) a sat-certificate C(F)
for F . Commandline options that impact on this stage are documented in Section 3.1.

Certificate verification. Takes as input a QBF F and (the internal representation of) a sat-
certificateC(F) for F (obtained either by the inductive reconstruction engine or by parsing
an external previously produced certificate), certifies its validity (see Appendix A), and
outputs a valid / invalid answer. Commandline options that impact on this stage are
documented in Section 3.2.

Expression evaluation. Takes as input a sat-certificate C(F) and an expression over C(F)
and outputs (the internal representation of) the result of the evaluation of the expression.
The commandline option used to provide expressions to be evaluated is documented in
Section 3.3, while their syntax and semantics is described in Section 4.

Information dump. Is responsible for dumping to file on request (a) the complete (or partial)
certificate in dot or qbm format (see Appendix B), (b) the result of the evaluation of
an expression in dot, or bdd, or cnf format, and (c) a partial certificate in QDIMACS
format. What exactly is dumped depends on arguments provided to the -dump switch,
which are listed in Section 3.4.

5

The default I/O behaviour of ozziKs depends on the commandline parameters provided (refer
to Section 3 for the meaning of the switches mentioned below):

• When an inference log is provided as input, the default behaviour is to

1. perform inductive certificate reconstruction;

2. check the internal consistency of the certificate;

3. verify the certificate (against the QBF referenced in the log itself, if no other QBF is
explicitly provided via -qbf);

4. output a valid/invalid answer;

5. dump to file the QBM representation of the certificate (taking into account the argu-
ments of the -var option, if it is present).

The kind of information dumped in the last step can be altered via the -dump switch.

• When a (complete) QBM certificate is provided as input and the evaluation of no expres-
sion is requested, the default behaviour is to

1. load the certificate;

2. check the internal consistency of the certificate;

3. verify the certificate (against the QBF referenced in the certificate itself, if no other
QBF is explicitly provided via -qbf);

4. output a valid/invalid answer;

Notice that in this case, unless explicitly requested via the -dump switch, no dump to file
is performed. If a dump to file is requested via -dump and variables are pruned via -var,
the (complete) certificate will be overwritten by the requested partial version.

• When a (complete) QBM certificate is provided as input and the evaluation of one or more
expressions is required (-eval switch present), the default behaviour is to

1. load the certificate;

2. check the internal consistency of the certificate;

3. evaluate the expression over the certificate;

4. (for inverse expresions only) dump to file a bdd representation of the result of the
evaluation of the expression.

Notice that in this case the verification stage is skipped, unless explicitly requested via the
-check option. The kind of information dumped in the last step can be altered via the
-dump switch.

• When a log is provided and the -eval switch is present, the default behaviour is to

1. reconstruct and check the certificate;

2. evaluate the expression over the certificate;

3. dump to file the QBM representation of the certificate (taking into account the argu-
ments of the -var option, if it is present);

4. dump to file a bdd representation of the result of the evaluation of the expression.

• When a directory is provided as an entry point, the behaviour is as described in Section 5.

6

3 Command-line options
Each option is identified by a small string beginning with the minus “-” sign. Some options are
followed by one or more optional or mandatory arguments. The order of options is not relevant.

3.1 Options for the “Inductive reconstruction” engine

-hbdd ’0’..’19’ [’:’ ’0’..’19’] is used to select both the heuristics for the dy-
namic variable reordering in the BDD manager during the inductive certificate reconstruc-
tion, and the heuristics for the final reordering performed just before dumping the infor-
mation to file.

The syntax -hbdd S:R gives both the reconstruction reordering rule S ∈ {0, . . . , 19}
and the final reordering style R ∈ {0, . . . , 19} to be used. If we only provide one argument
(e.g.: -hbdd R) we instruct the software to use the same heuristics for both cases.

ozziKs uses the CUDD package [7] as a core tool to manage binary decision diagrams.
The CUDD implements a number of reordering heuristics, and the R value just tells ozziKs
which heuristics is to be selected in the CUDD. The integer R ∈ {0, . . . , 19} selects a
dynamic reordering heuristics according to the following table:

0 dynamic reordering is disabled
1 CUDD_REORDER_RANDOM

2 CUDD_REORDER_RANDOM_PIVOT

3 CUDD_REORDER_SIFT

4 CUDD_REORDER_SIFT_CONVERGE

5 CUDD_REORDER_SYMM_SIFT

6 CUDD_REORDER_SYMM_SIFT_CONV

7 CUDD_REORDER_WINDOW2

8 CUDD_REORDER_WINDOW3

9 CUDD_REORDER_WINDOW4

10 CUDD_REORDER_WINDOW2_CONV

11 CUDD_REORDER_WINDOW3_CONV

12 CUDD_REORDER_WINDOW4_CONV

13 CUDD_REORDER_GROUP_SIFT

14 CUDD_REORDER_GROUP_SIFT_CONV

15 CUDD_REORDER_ANNEALING

16 CUDD_REORDER_GENETIC

17 CUDD_REORDER_LINEAR_CONVERGE

18 CUDD_REORDER_LAZY_SIFT

19 CUDD_REORDER_EXACT

See the CUDD documentation [7] for the modus operandi of each heuristics. Notice that:

• This option does not affect the semantics of the certificate, but just its representation.
Indeed, a certificate is a forest of BDDs over the universal support, so there are as
many ways of writing a certificate as possible orderings for universal variables.

• Unless we completely disable reordering with the option:

-hbdd 0

...the actual universal order we find in the dumped certificate is the contingent order-
ing the BDD manager eventually reaches after performing the whole inductive model
reconstruction process (during which multiple reordering steps might have been au-
tomatically triggered).

• Conversely, if reordering is disabled the whole work is done (and the final certificate
dumped) using the left-to-right order of variables in the prefix of the original formula.

• By specifying two different heuristics we can make the solver “refine” the certificate
by some costly heuristics just before dumping it, while the whole reconstruction
process has benefited from some cheaper rule. For example, with

7

-hbdd 13:19

...we obtain the smallest possible version of a certificate which has been built using
intermediate larger (but still somehow optimized) representations2. If the -var op-
tion is used to select a subset of interesting existential variables, the final reordering
is performed after pruning the non-interesting ones.

-var A1[-B1] [,A2[-B2] ,...] makes the specified subset of the functions for exis-
tential variables to appear in the certificate, leaving all the others out. The set of interest is
specified by a comma-separated list of intervals (with no space in between), each interval
of the form [A,B] being written asA-B, whereA andB,A ≤ B are two positive integers
naming the extremes of the interval. Singleton intervals may be written as the name of the
single variable they contain. For example:

-var 10-20,1-5,30

makes the functions associated to the 17 variables in {1, 2, ..., 5, 10, 11, ..., 20, 30} appear
in the certificate (we suppose those variables are actually existentially quantified), while
all the others (if any) are skipped. Some usage notices:

• A certificate that does not contain the interpretation of every skolem function is not
a certificate, in fact. Let us call it a partial certificate. A partial certificate cannot be
in general used to certify the validity of a formula.

• When requested to produce a partial certificate ozziKs will first produce a complete
certificate against which the formula is checked, then it will drop the variables not
requested before dumping information to files.

• A partial certificate may still be very useful if one knows, for example, that the
dumped variables are the only functionally independent ones (all the rest can be com-
puted given the universal scenario and the partial certificate). In this case, a partial
certificate contains all the relevant information of a complete certificate while be-
ing (possibly) much smaller than that. For example, in a deterministic game a few
variables dumped in the partial certificate may represent the moves of the existential
player, while all the other variables just encode the state of the game (a thing which
deterministically follows from the universal/existential moves).

3.2 Options for the “Certificate verification” engine

-qbf QDIMACS_FILE_NAME lets ozziKs know explicitly the name of the file containing
the instance against which we want to verify the certificate. This option is not meant to
be used in the batch mode. In the single-instance mode this option is often unnecessary,
because the log file and the certificate both contain a pointer to the instance from which
the log/certificate has been obtained, which is supposed to be the same against which we
want to perform certification. If the instance and the log/certificate have a different relative
position in the file system w.r.t. when they were solved/created, ozziKs may be unable to
locate the qdimacs file, and this option can be used to supply it with a proper path.

-check requests explicitly to ozziKs to verify the validity of the certificate against the formula
it refers to. This option is unnecessary in all the cases in which validity is examined by
default, namely (1) when an inference log is given as input, and (2) when a certificate is
provided as input an no expression is to be evaluated. When a certificate is loaded and

2The exact reordering is only time-feasible for very small formulas. Or, for big formulas with few universal variables
and where most of the existential variables have been pruned away via the -var option.

8

some expression is given, validity check is skipped by default, and can the forced by this
option. Also, in batch mode the default behaviour is to skip certificates and only process
log files. With this options ozziKs is requested to check the certificates it encounters
(while certificates just produced are checked anyway).

3.3 Options for the “Expression evaluation” engine

-eval “EXP¨ requests the evaluation of the (double-quote delimited) direct or inverse expres-
sion EXP. ozziKs distinguishes the two cases by their syntax. For details on the syntax
and semantics of expressions see Section 4.

This switch also accepts a path to a (text) file instead of an expression. The file is opened,
parsed line-by-line, and to each line starting by a (syntactically and semantically) valid
expression over the current certificate, a tail is added where the result of the evaluation is
provided (see Examples 6-7 in Section 6).

3.4 Options for the “Information dump” engine

-dump INFO enables the dumping to file of specific pieces of information. INFO is a space-
separated list of arguments. Each argument is a menmonic string that specifies what has to
be dumped. Possibilities are as follows:

qbm=bdd requests to dump the whole certificate as a forest of BDDs in a ozziKs for-
mat based on the DDDDMP-2.0 format (see Appendix B). This dump is enabled by
default when an inference log is given as input, and disabled otherwise. The format
produced is amenable to be re-parsed by ozziKs itself, or to be load and processed
by some other application. For a logfile obtained from instance.qcnf, the name
of the file containing the BDD certificate is instance.qcnf.qbm.

qbm=dot requests to dump the whole certificate as direct acyclic graph representing the
BDD forest in the DOT format3 (see Appendix B). This dump is disabled by default.
When qbm=dot is specified, the dump to BDD format is disabled. The name of the
file containing the DOT certificate is instance.qcnf.qbm.dot.

qbm requests to dump both the BDD and the DOT representation of the certificate.
exp=bdd requests to dump the result of the evaluation of an inverse expression or a set

of expressions provided via the -eval switch (see Section 4.3) in a BDD-based
format. This type of dump is enabled by default when -eval is used. The name
of the file containing the result is instance.qcnf.qbm.exp.bdd. If multiple
expressions are evaluated within a single -eval argument, this file contains a forest
with a root (or two) for each expression.

exp=bdds works like exp=bdd, but if multiple expressions are evaluated in a single
-eval argument, separate files are dumped, one for each of them. The name of the
files containing the representation of the result of each expression is instance.
qcnf.qbm.N.exp.bdd, where N is progressive counter starting from 1.

exp=dot requests to dump the result of the evaluation of an inverse expression as a DOT
file. This type of dump is disabled by default, and when activated it disables the
BDD dump. The name of the file containing the DOT representation of the result is
instance.qcnf.qbm.exp.dot. If multiple expressions are evaluated within
a single -eval argument, this file contains a forest with a root (or two) for each
expression. See Section 4.3 for the content of the DOT file.

3The DOT format is a standard language to describe graphs. It is amenable to be parsed by automatic graph drawing
programs like “graphviz” which visualize them. Both the rendering software and the language description can be found
at www.graphviz.org.

9

exp=dots works like exp=dot, but if multiple expressions are evaluated within a sin-
gle -eval argument, separate files are dumped, one for each of them. The name
of the files containing the result of each expression is instance.qcnf.qbm.N.
exp.dot, where N is a progressive counter starting from 1.

exp=cnf requests to dump the result of the evaluation of an inverse expression as a
(couple of) CNF instances in the DIMACS format. This type of dump is disabled by
default, and when activated it disables the BDD dump. Only one instance per expres-
sion is dumped if no DONT-CARE condition exists for such expression. The name of
the file containing the CNF representation is instance.qcnf.qbm .exp.cnf
if one single instance is evaluated, or instance.qcnf.qbm.N.exp .cnf for
multiple instances, where N is as described before. If DONT-CARE conditions ex-
ist, two instances are dumped for each expression evaluation: a instance.qcnf.
qbm.true.exp.cnf instance capturing scenarios in which the expression is true,
and one instance.qcnf.qbm.false.exp.cnf instance for false scenarios.
The instance.qcnf.qbm.N.(true|false).exp.cnf format is used to dump
multiple evaluations of expressions with DONT-CARE conditions.

exp requests to dump all the three formats for the results of inverse expressions.

direxp enables the dump to a file named instance.qcnf.qbm.exp.direct of
the direct expression(s) in input followed by the result(s) of their evaluation(s).

qbc requests to dump to a file named instance.qcnf.qdc a DIMACS1.1 compliant
version of a partial certificate for the formula, i.e. a valid assignment to the existential
variables in the outermost scope (qdc stands for Quantified Dimacs Certificate).

all requests to dump all the previously described information.

3.5 Other options

-remove (log|qbm) instructs ozziKs to remove logs/certificates after they have been pro-
cessed (certificates are removed after they have been checked, logs after the reconstruction
process is completed). This option is meant to free automatically the possibly huge amount
of disk space occupied by such files, if the interesting piece of information one seeks is
just the certification and not the certificate itself.

-report enables the production of a textual report about the certificates produced in a batch-
mode run. See Section 5.4 for details.

-v [0..5] controls the output verbosity. The value 0 makes ozziKs absolutely silent, so that
the only output is the return value. The value 1 makes it report just a VALID/INVALID
feedback for each instance. Higher values cause ozziKs to expose a part of its internal
status as its activities go on. The default value is 3 in single-instance mode (which prints
on-screen a percentage completion value for each major step), and 1 in batch mode. With
a 5 value we additionally obtain an indication of when ozziKs is performing BDD reorder-
ing.

-giveup makes ozziKs skip some instances in batch mode. See Section 5.3 for details.

-autogiveup makes ozziKs skip some instances in batch mode. See Section 5.3 for details.

-version prints ozziKs’s version.

-copyright prints copyright and license notes.

10

4 Expressions over certificates and their evaluation
A sat-certificate C(F) for a true QBF F contains lots of useful information about F . The usage
of C(F) as a mean to certify the validity of F is just a first step in the exploitation of such
information. Once we are sure that C(F) is indeed a valid sat-certificate for F , we may query
C(F) to obtain explicit knowledge about the theory implicitly described by F .

We do this by defining two kinds of expressions that can be evaluated over a certificate:
direct and inverse expressions. In both cases, the user provides a (boolean) expression E over
existential literals as input (the simplest case being just one existential literal). Then:

• In direct expressions, the user also provides some (partial) assignmentA over the universal
variables (hereafter called scenario). The result of the evaluation is the truth value ofE un-
der the assignmentA (in a multi-valued logic which we describe below). Such expressions
are named “direct” as they match the input-output behavior of skolem functions: They are
meant to compute the truth value of existential variables (or compositions thereof) as a
function of user-provided truth values for universal variables.

• In inverse expressions, the user does not specify any scenario. Rather, he asks for some
representation of all the scenarios in which E holds. Such representation is provided as
either a BDD or a CNF on the relevant universal variables. In this case the expressions are
named “inverse” for a reason dual to the one above.

So, direct expression evaluations map an existential expression and a universal assignment
onto a truth value, inverse ones map an existential expression over a set of assignments.

4.1 Simple direct expressions
The basic syntax to request the evaluation of an existential variable e given a (partial) universal
assignment represented as a set of literals {ψ1, . . . , ψm} is e(ψ1, . . . , ψm), where variables are
named by their numeric codes. For example, to know the truth value the certificate assigns to the
existential variable with code 10 once the universal variables 2, 3, and 5 have been assigned to
FALSE, TRUE, and FALSE respectively, we write

-eval "10(-2,3,-5)"

The evaluation of direct expressions fails in the following circumstances:

• the variable e in e(ψ1, . . . , ψm) is not an existential variable;

• e is if fact existentially quantified but it was never mentioned in the matrix of the formula
from which the queried certificate originates;

• e is existentially quantified and was mentioned in the matrix, but information about it has
been striped off by means of -var;

• some of the universal literals in ψi were not universally quantified.

It is not requested that the literals ψ1, . . . ψm constitute a total assignment over the universal
variables dominating e. They may just specify a partial assignment, or (pointlessly) assign some
universal variable not dominating e, or even assign no variable at all.

For this reason, the result of a successful evaluation for e can in general be more complex
than a true/false answer. The full set of possibilities is as follows.

11

Outcome Symbol Meaning Return code
Q_FALSE F e is FALSE, in the sense that in ALL the universal sce-

narios consistent with the inputs provided to the query the
existential variable e takes the value FALSE according to
its skolem function

0

Q_TRUE T e is TRUE, in the sense that in ALL the universal scenarios
consistent with the inputs provided to the query the exis-
tential variable e takes the value TRUE according to its
skolem function

1

Q_WEAK_FALSE wF e is weakly FALSE, in the sense that in SOME of the uni-
versal scenarios consistent with the inputs provided to the
query, the bit has to be FALSE, while in SOME others it
is a DONT-CARE condition; so, it is safe to consider it as
FALSE though more determined input conditions may turn
the answer for this variable into a Q_DC (see below)

2

Q_WEAK_TRUE wT e is weakly TRUE, in the sense that in SOME of the uni-
versal scenarios consistent with the inputs provided to the
query, the bit has to be TRUE, while in SOME others it is
a DONT-CARE condition; so, it is safe to consider it as
TRUE though more determined input conditions may turn
the answer for this variable into a Q_DC (see below)

3

Q_DC DC e is in a DONT-CARE condition, in the sense that there
is no universal scenario consistent with the inputs of the
query in which any specific assignment to this variable (to
either true or false) may result in a contradiction

4

Q_DEPENDS ? With the (universal) inputs that have been provided it is
not possible to fix a value for e, as in some of the cases
consistent with the input such variable has to be FALSE,
while in some other cases it has to be TRUE

5

Q_ERROR err Some error occurred. 6

The result of the evaluation of a direct expression is communicated to the user by:

• Writing out the expression and the “symbol” outcome in verbose mode. For example:

10(-2,3,-5) = wT

• Returning to the calling script or shell the exit code mentioned in the last column of the
above table;

• Dumping the whole “10(-2,3,-5) = wT” to the file instance.qdimacs.qbm.exp,
if this dump has been requested through the “-dump direxp” option.

4.2 Compound direct expressions
Rather than asking for the truth value of an existential literal, we may compose existential literals
into boolean expressions and ask for the truth value of such expressions (in some scenario).

The syntax of compound direct expressions is as follows.

• if e is (the numeric code of) an existential variable, then e and −e are expressions.

• if arg is an expression, not(arg) and dc(arg) are expressions4.

• if arg1 and arg2 are expressions, so are and(arg1,arg2), or(arg1,arg2), xor(arg1,
arg2), and implies(arg1,arg2)5.

4Parentheses can be omitted for these two unary operators, so we can write “not arg” and “dc arg”. The “not”
operator can be equivalently written as “!” (with or without braces).

5Parentheses cannot be omitted here, and operators are only binary at present.

12

A compound expression E evaluated in the universal scenario ψ1 . . . , ψm is noted < E >
(ψ1 . . . , ψm). For example:

-eval "<and(-20,or(24,25))>(-2,3)"

Like simple expressions, direct compound expressions evaluate to one of the six truth values
described in the previous section (disregarding error conditions). The result of the evaluation
of direct compound expressions is first defined for total universal assignment, then extended to
partial ones:

• Given an existential literal e and an assignment ψ1, . . . , ψm that is total over the set of
universal variables dominating e, the expression e(ψ1, . . . , ψm) cannot evaluate to an ar-
bitrary value in the table, but only to one in {T,F,DC}. Namely, for a certificate C in which
the couple of skolem interpretations associated to e is 〈E+, E−〉 (see Appendix A), it is

– e(ψ1, . . . , ψm) = T if 〈ψ1, . . . , ψm〉 ∈ E+;

– e(ψ1, . . . , ψm) = F if 〈ψ1, . . . , ψm〉 ∈ E−;

– e(ψ1, . . . , ψm) = DC if 〈ψ1, . . . , ψm〉 6∈ E+ ∪ E−.

From existential literals, this evaluation is extended to expressions (considering as “to-
tal for an expression” an assignment which is total on the dominating set of the deepest
existential literal in the expression) according to the truth tables:

and F T DC not dc
F F F F T F T F
T F T DC F T F F
DC F DC DC DC DC DC T

... and by posing or(arg1,arg2)=!and(!arg1,!arg2), implies(arg1,arg2)=
or(!arg1,arg2), xor(arg1,arg2)=or(and(!arg1,arg2),and(arg1,!arg2)).

• For any universal assignment U which is not total for an expression E, we consider each
total assignment extending U which is total for E. For each such assignment, the expres-
sionE evaluates to a value in {T,F,DC}, according to the rule given at previous item, hence
to a value in {T,wT,F,wF,DC,?} according to the definitions given in Section 4.1.

The feedback provided to the user after the evaluation of compound expressions is the same as
in the case of simple expressions. For example, we may read on-screen the answer:

<and(-20,or(24,25))>(-2,3) = wT

4.3 Inverse expressions.
The syntax for inverse expressions is similar to the syntax for direct expressions, but arguments
(and angular braces) are dropped. For example, we write:

-eval "and(-20,or(24,25))"

Rather than evaluating to a specific truth value, this expression evaluates to a set of scenarios.
Namely, it represents all the scenarios in which and(-20,or(24,25)) is true, i.e. all the
universal assignments under which the skolem interpretations given in the certificate for the
existential variables 20, 24, and 25 are such that 20 evaluates to F, and at the same time at least
one out of 24 and 25 evaluates to T.

13

A set of scenarios requires a suited representation to be delivered to the user: ozziKs uses
either BDDs, or DOT representations, or CNF formulas (all these three formats are dumped to
file). The type of dump is controlled via the -dump switch as discussed in Section 3.4. In the
case of a CNF answer, for example, a propositional instance on the relevant universal variables
is provided whose models are all and only the scenarios that meet the required condition. Such
instance is written to file in the DIMACS format for the user to process. For detailed examples
of inverse expression evaluations see Example 7.

The set of scenarios in which the expression provided evaluates to true is not enumerated in the
on-screen feedback. Rather, an indication is given on the percentage of assignments (over the set
of all the possible total universal assignments) that makes the expression evaluate to true. For
example, we may see an answer like:

and(-20,or(24,25)) = 25%

which means that in 1 out of 4 (total) scenarios the expression we provided evaluates to T, while
in the other 3 it evaluates to F. The special strings always and never are provided as answers
in the 100% and 0% cases respectively.

There is one last thing to take into account: Compound existential expressions evaluated over
total universal assignments may as well evaluate to DC. This means that once an expression like
and(-20,or(24,25)) is provided, we expect (1) a representation of the scenarios in which
it evaluates to T and (2) a second representation of the scenarios in which it evaluates to F, and
this because there might be cases that do no fall in either set: the DC scenarios.

The on-screen feedback for expressions in which DONT-CARE conditions exist is like this:

and(-20,or(24,25)) = [25%:50%]

... which means that in 25% of the scenarios the expression is true, in 50% it is false, and in the
remaining 25% it is a DONT-CARE. The dump to file is also slightly affected by the existence
of DONT-CAREs: For BDD and DOT representations, two roots exist in the diagram instead
of just one: the root of the BDD (or DOT diagram) representing the arguments on which the
expression evaluates to T, and the one in which it evaluates to F. For CNF representations, two
separate CNFs are dumped to capture the two sets (see Section 3.4 and Example 7 for details).

4.4 Multiple expressions.
A syntax is provided to request the evaluation of more than one existential expression at once on
the same universal input. To request the evaluation of the direct expressions E1, . . . , En under
the same assignment ψ1, . . . , ψm, we write < E1, . . . , En > (ψ1, . . . , ψm). The answer is itself
a tuple of size n enclosed in angular parentheses. For example:

<10,15,20,21>(1,-2,3,-5,8) = <T,F,wF,DC>

In case of tuple answers the return code outcome is not used, so the user may know the answer
either on-screen, or requesting its dump to file. For inverse expressions the syntax is similar:

<24,xor(25,10),or(dc 21, dc 25)> = <50%,always,[25%:25%]>

14

5 Batch mode
When we launch ozziKs giving a subdirectory as an entry point (rather than a single log/certificate
file), the solver operates in batch mode. It traverses the whole directory subtree rooted at the
given entry point, processing each log file encountered during the visit. If the -check option is
provided, QBM certificates are looked for and processed instead of log files.

There are a few behaviors specific to the batch mode, and some differences w.r.t. the single-
instance mode. They are discussed in the following subsections.

5.1 Order of processing
The order in which multiple instances are processed complies with following rules.

• Directories are traversed recursively, in a depth-first way.

• The recursive visit takes place in post-order (log/certificates are processed before visiting
nested directories).

• Log/certificates in each directory are first sorted according to a case-insensitive natural
lexicographic ordering6 of the file names, then processed in such order.

5.2 Return values
In batch mode, ozziKs returns the number of instances successfully processed (i.e. those for
which the certificate has been successfully verified). Some error codes are also used. The full
list of possibilities is the following.

-1 on unrecoverable internal error.

-2 on I/O error or file not found.

-3 on commandline parse error.

n (≥ 0): the number of valid certificates built.

5.3 Timeouts
When ozziKs is required to traverse a directory subtree and a timeout is specified, it works for
no longer than the specified amount of time on each log/certificate, then moves on to the next one.

Additionally, the -giveup and -autogiveup options can be used to skip one entire family when
a timeout or a problem occurs. More precisely, these options instruct the reconstructor to give
up after the first log/certificate in a familiy cannot be produced or successfully verified. See the
manual of sKizzo [1] for further details.

6This is the kind of ordering implemented by the PHP strnatcasecmp function, which is based on the C im-
plementation by Martin Pool we find at http://sourcefrog.net/projects/natsort/. In this ordering,
numeric substrings without enough leading zeros do not disrupt the human-friendly sequence (e.g. adder9.qdimacs
comes before adder10.qdimacs), because any string is “exploded” into numeric and non-numeric components which
are evaluated left-to-right according to a lexicographic comparison (non-numeric components) or an arithmetic compar-
ison (numeric components).

15

5.4 Reporting
The -report option enables the production of a textual report about the certificates produced in
a batch-mode run. A textual report is placed in each directory traversed, containing informa-
tion about certificates extracted from instances in that directory. The report is named after the
directory itself and has a .qbm.txt extension.

A report contains one line for each processed log file. Each line contains the following tab-
separated information on the processed instance:

1. name of the instance

2. number of variables

3. number of clauses

4. prefix shape

5. number of alternations

6. time taken to solve (secs)

7. time taken to reconstruct the certificate (secs)

8. time taken to verify the certificate (secs)

9. Size of the inference log (number of steps)

10. Size of the model (number of internal nodes in the BDD forest)

11. Outcome (either “VALID” for a successful reconstruction/verification, or “INVALID” in
case something went wrong)

See Example 5 for a case of batch processing with report construction.

16

6 Examples of usage

Example 1: Basic certificate reconstruction and verification.

In this first example we show how to use ozziKs in conjunction with the QBF solver sKizzo
for a basic task and on a small instance. Both these softwares have to be available for you to
reproduce the sample certificate extraction and check discussed below.

We consider a small publically available (TRUE) QBF instance7, named “s27_d2_s.qcnf”. It
is a formula containing 142 clauses, whose prefix has the shape: ∃E1∀A∃E2. The three disjoint
sets of variables E1, A, and E2 contain 29, 10, and 26 variables respectively. As a sat-certificate
for this formula we want to exhibit:

1. For every variable in E1, an assignment to a truth value in {T, F, DC}, and

2. For every variable in E2, a function from the set of truth assignments over A (a set of size
210 = 1024) into {T,F, DC}.

We start by issuing the command:

sKizzo -log s27_d2_s.qcnf

Notice the presence of the switch “-log”, which causes the solver to produce an inference log
of the solution process (see Appendix A and Appendix B for details).

After being prompted with a response like:

sKizzo v0.8.2-beta, (revision 3xx, compiled Mar 16 2006)

1.Processing "./s27_d2_s.qcnf"... [OK, TRUE, 6.95Mb, 0.17s]

1/1 instance successfully solved.

... we know the instance is TRUE (by deduction), and we obtain a new file containg the inference
log. It is named after the instance, with just an additional “.sKizzo.log” suffix:

s27_d2_s.qcnf.sKizzo.log

At this point, we ask ozziKs to process the inference log, by issuing the command:

ozziKs s27_d2_s.qcnf.sKizzo.log

As a result, we obtain something like this:

ozziKs v0.3-beta, (revision 392, compiled Nov 7 2006)

1.Processing "s27_d2_s.qcnf.sKizzo.log"...
a.Model reconstruction and certification.
1.Inductive reconstruction [0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%] [OK, 0.02s]
2.Consistency check [0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%] [OK, 0.00s]
3.Validity check [0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%] [OK, 0.00s]
[OK, Certificate is VALID, 0.02s, 0.00% in BDD]

b.Dump to file:
1.Additional reordering [OK, 0.00s]
2.QBM representation: "s27_d2_s.qcnf.qbm" [OK, 25 nodes, 1.0 KBytes, 0.00s]
[OK, 0.00s]

[OK, VALID, 0.03s]

... where:
7This instance encodes a sequential depth computation problem (at depth 2) for the “s27” circuit in the ISCAS’89

benchmarks. It has been produced by Maher Mneimneh, and is available from www.qbflib.org.

17

• Row 1.a.1 documents the advancement of the inductive model reconstruction process
that ozziKs performs (inductive reconstruction engine). On small instances (like our sam-
ple one), such process is almost instantaneous. On more complex instances, we see a
gradual advancement of the completion bar: Certificate reconstruction may require a sen-
sible amount of time/memory8.

• Row 1.a.2 documents the consistency check that ozziKs performs on the certificate9.

• Row 1.a.3 reports on checking the matrix of the QBF in s27_d2_s.qcnf against the
certificate (certificate verification engine). So, the answer “Certificate is VALID”
means that a solver-independent, evaluation-based approach confirms that the formula is
indeed TRUE, ruling definitely out the possibility of an unsound answer by the solver (see
Appendix A).

• Row 1.b.2 witnesses the dumping to file of a QBM representation for the certificate.
This means that a file named after the original instance is created (with an additional .qbm
extension):

s27_d2_s.qcnf.qbm

This file contains a BDD-based representation for the set of dependencies between univer-
sal and existential variables we were looking for (see Appendix B). Notice that the number
of nodes in the forest as a whole, and the file size are also reported.

It is possible to give such file back to ozziKs as input, in case we are interested in manip-
ulating/querying it without being forced to reconstruct it from scratch (see next example).

Example 2: How to dump more information.

We may give ozziKs some additional commandline options to trigger further information dump
(see Section 3.4). For example, by issuing

ozziKs -dump qdc qbm=dot s27_d2_s.qcnf.sKizzo.log

we ask the dump engine to produce a DOT representation of the certificate instead of a QBM
one, and to dump a DIMACS1.1 partial certificate. We may as well provide as input the QBM
certificate already constructed. To do this, we issue:

ozziKs -dump qdc qbm=dot s27_d2_s.qcnf.qbm

ozziKs’s reply becomes like this:

ozziKs v0.9-beta, (revision 152, compiled Nov 7 2006)

1.Processing "s27_d2_s.qcnf.qbm"...
a.Certification
1.Consistency check [0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%] [OK, 0.00s]
[OK, Verification skipped as requested, 0.01s]

b.Dump to file:
1.Additional reordering [OK, 0.00s]
2.DOT representation: "s27_d2_s.qcnf.qbm.dot" [OK, 0.00s]
3.QDC representation: "s27_d2_s.qcnf.qdc" [OK, 0.00s]
[OK, 0.00s]

[OK, VALID, 0.01s]

8Occasionally, it might come out to be more (computationally) expensive than the solution process itself.
9The representation used for certificates (see Appendix A) is general enough to represent objects that are not valid

certificates (in that they require a variable to take both truth values at the same time). So, this test is mainly intended to
exclude that any problem leading to the generation of an invalid certificate arose during the reconstruction.

18

 a18

 a19

 a20

 a21

 a23

 a25

 a26

 a27

 a28

 a29

 e4 e5 e6 !e7 e1 e2 e3 !e9 !e10 e11 !e12 !e13 !e14 e15 e16 e17 e32 !e33 e34 e35 !e37 !e38 !e39 !e40 e41 !e42 e43 e44 !e45 e60

1

 e61

18.1

 e62

18.2

 e63 e64

29

 e65 e66

23.2

 e67

25.1

 e68 e69

26.3

 e70

25.3

 e71

25.4

 e72

19.1

 e73 e74

19.2

 e75

21.2

 e76

25.5

 e77

21.1

 e78

28.2

 e79

26.4

 e80 e81 e82

26.5

 e83 e84

20

 e85

27

23.1

25.2

28.1

26.1 26.2

28.3

Figure 2: DOT representation of a (complete) sat-certificate for “s27_d2_s.qcnf”.

... where:

• Only an internal consistency check is performed, as expected (the actual validity check
may be forced by means of -check).

• Row 1.b.2 documents the dump triggered by the qbm=dot argument of -dump. The
“s27_d2_s.qcnf.qbm.dot” file produced contains the very same information we
find in “s27_d2_s.qcnf.qbm”, but in a format amenable to be rendered graphically10.
The result of such rendering is depicted in Figure 2. To know how to read it, please see
Appendix B.3. Notice that the DOT format is an output-only format that cannot be parsed
again by ozziKs.

• Row 1.b.3 documents the dump triggered by the qdc argument. The “s27_d2_s
.qcnf.qdc” file produced contains a subset of all the universal/existential dependen-
cies contained in the certificate, namely those concerning the outhermost existential scope
(whose variables do not depend on any universal, hence are associated to constant func-
tions). A validity-preserving assignment to the variables in such outermost scope is hence
dumped in the DIMACS1.1 output format11. In our case, its content is like this:

c Solver: sKizzo v0.8.2-beta, (revision 3XX, compiled Mar 23 2006)
c Instance: "s27_d2_s.qcnf"
s cnf 1 66 [unknown]
v -4 -5 7 -1 -2 -3 9 10 -11 12 13 14 -15 -16 -17
v -32 33 -34 37 38 39 40 -41 42 -43 -44 45

In the last rows of this file we recognize the required assignment to the outermost existen-
tial scope. By adding to the s27_d2_s.qcnf instance the unit clauses -4, -5, 7, etc. we
obtain a true formula with a universal outermost scope12.

10The complexity of the graphical representation is such that the rendering can be actually accomplished only for very
small formulas/certificates (or, for certificates heavily pruned via -var), so this feature is mainly for exemplification
and/or debug purposes.

11A specification of this format is given at http://www.qbflib.org/qdimacs.html. The DIMACS 1.1 file
is built by ozziKs by extracting a few relevant information out of the qbm file (i.e. the zero-arity functions). Never-
theless, the whole certificate is built, which could be (much) harder than what is actually required to just compute a
valid outermost assignment. This means that an optimized version of ozziKs that knows it has only been requested to
produce the outermost assignment could be much faster. This optimization is currently not implemented.

12The DIMACS 1.1 specification requires that a solver dumps (i) the outermost existential assignment for TRUE
instances, OR (ii) an outermost universal witness of inconsistency for FALSE instances. Unfortunately, the request
number (ii) strongly relies on the hypothesis that we are working with a search-based solver. Right before answering
FALSE, these solvers find themselves on a universal branch that shows how the cofactored existential formula fails to be
true. They have an easy time in dumping such information. Conversely, semantics-based approaches just suppose that
TRUE formulae have models (and ozziKs gives us a piece of that model in the case (i)), while FALSE formulae do
not (ozziKs gives us nothing in this case).

19

 a19

 a21

 a25

 a27

 a28

 e71 e72

19.1

 e73

1

 e74

19.2

 e75

21.2

 e76

25.2

21.1

27

25.1

28

Figure 3: DOT representation of a (partial) sat-certificate for “s27_d2_s.qcnf”. Only the
skolem interpretations for variables in the interval [71− 76] are preserved.

Example 3: Partial certificates.

Suppose we are only interested in the behaviour of variables [71−76] of the formula s27_d2_s.qcnf
and we want a graphical representation of such behaviour.

By issuing the command:

ozziKs -dump qbm=dot -var 71-76 s27_d2_s.qcnf.qbm

... we obtain the BDD forest in Figure 3.

Notice that the QBM certificate is unaffected by the above operation. If what we desire is to strip
variables not in [71− 76] from the very QBM certificate (thus turning it in a partial certificate),
we can either issue:

ozziKs -dump qbm=bdd -var 71-76 s27_d2_s.qcnf.qbm

or we can provide the -var switch to the reconstruction engine in the first place:

ozziKs -var 71-76 s27_d2_s.qcnf.sKizzo.log

Example 4: “Don’t care” conditions.

In Figure 2 and Figure 3, each existential variable is associated to only one root in the forest. This
happens because no DONT-CARE condition occurs, so it is enough to know the positive function
associated to that variable (as the negative one is just its complement). However, suppose we
consider the QBF instance

20

 a1

 a2

 a4

 e3 e5

1.1

 !e5

1.3

 e6

1.4

 !e6

1.5 1.2

1

4

2.1 2.2

Figure 4: DOT representation of a (total) sat-certificate of a QBF with DONT-CARE conditions.

∀a∀b∃c∀d∃e∃f. (¬b∨e∨f)∧ (a∨c∨f)∧ (a∨d∨e)∧(¬a∨¬b∨¬d∨e)∧
(¬a∨b∨¬c)∧ (¬a∨¬c∨¬f)∧ (a∨¬d∨¬e)∧ (¬a∨d∨¬e)∧ (a∨¬e∨¬f).

... which is encoded in the standard QDIMACS format by choosing an arbitrary correspondence
between variable names and positive integer values, such as

a↔ 1 b↔ 2 c↔ 3 d↔ 4 e↔ 5 f ↔ 6

...we obtain a QDIMACS instance which we write in a example.qdimacs file as follows:

p cnf 6 9
a 1 2 0
e 3 0
a 4 5 6 0
-1 2 -3 0
-1 -2 -4 5 0
-1 4 -5 0
1 3 6 0
1 -4 -5 0
1 4 5 0
-1 -3 -6 0
-2 5 6 0
1 -5 -6 0

By processing this instance with sKizzo/ozziKs:

sKizzo -log example.qdimacs

ozziKs -dump qbm=dot example.qdimacs.qbm

... we obtain for its sat-certificate the DOT representation depicted in Figure 4. We notice that
while variable 3 (i.e. variable c) is associated to a skolem function with no DONT-CARE con-
dition, variables 5 and 6 have some DONT-CARE conditions: They indeed appear as a positive
literals (labeling the root of diagrams representing conditions under which they evaluate to true)
and negative literals (labeling the root of diagrams representing conditions under which they
evaluate to false). Cases captured by none of the two diagrams are DONT-CAREs.

21

Example 5: Batch processing.

Suppose we want to

• process all the inference logs in the directory /path/to/my/instances/ (and sub-
directory thereof) so to produce the respective certificates and dump them to file, and

• verify such certificates against their originating QBFs, and

• dump for each reconstruction/verification a line of information into the textual report
/path/to/my/instances/instances.qbm.txt

We just issue:

ozziKs -report /path/to/my/instances/

For example, if we solve by sKizzo all the instances in the directory /path/to/qshifter13

with the -log option enabled:

sKizzo -log /path/to/qshifter

... and then we issue the command:

ozziKs -report /path/to/qshifter

... all the certificates are reconstructed and verified, and a report file named qshifter.qbm.txt
is creaded inside /path/to/qshifter with approximately the following content:

qshifter_3 19 128 A[11]E[8] 1 0.00 0.00 0.00 10 33 VALID
qshifter_4 36 512 A[20]E[16] 1 0.00 0.00 0.01 18 81 VALID
qshifter_5 69 2048 A[37]E[32] 1 0.03 0.02 0.01 34 193 VALID
qshifter_6 134 8192 A[70]E[64] 1 0.19 0.09 0.07 66 449 VALID
qshifter_7 263 32768 A[135]E[128] 1 1.10 0.45 0.33 130 1025 VALID
qshifter_8 520 131072 A[264]E[256] 1 8.40 2.32 1.54 258 2305 VALID

If we desire to process all the inference logs in the directory /path/to/my/instances/
(and subdirectory thereof) so to produce the respective certificates, in such a way that after each
certificate is dumped to file its originating log gets erased, and we also prefer that if a certificate
cannot be reconstructed within 10 seconds, then ozziKs has to give up and continue with the
next log, we issue:

ozziKs -remove log /path/to/my/instances/ 10

Notice that logs for which certificate reconstruction times out are not erased.

13We suppose this directory happens to contain the 6 QBF instances of the q-shifter family as encoded by Pan,
and as available from www.qbflib.org.

22

Example 6: Evaluation of direct expressions .

Let us consider the QBF and the certificate we introduced in Example 4. Suppose we want
to know the truth value of variable 5 under the scenario {−1, 4}. We issue:

ozziKs -eval "5(-1,4)" example.qcnf.qbm

... and we obtain:
1.Processing "sat.qdimacs.qbm"...
a.Certification
1.Consistency check [0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%] [OK, 0.00s]
[OK, Verification skipped as requested, 0.01s]

b.Evaluation (direct)
1. 5(-1,4) = F [OK, 0.00s]
[OK, 0.00s]

c.Dump to file: [OK, 0.00s]
[OK, VALID, 0.01s]

where the answer we look for is provided at line 1.b.1 (we see that the answer is consistent with
Figure 4). Now we ask the evaluation of multiple existential literals over the same scenario, and
we also request a dump to file of the result:

ozziKs -eval "<3,5,6>(-1,4)" -dump direxp example.qcnf.qbm

ozziKs v0.3-beta, (revision 372, compiled Nov 7 2006)

1.Processing "sat.qdimacs.qbm"...
a.Certification
1.Consistency check [0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%] [OK, 0.00s]
[OK, Verification skipped as requested, 0.01s]

b.Evaluation (direct)
1. 3(-1,4) = T [OK, 0.00s]
2. 5(-1,4) = F [OK, 0.00s]
3. 6(-1,4) = wT [OK, 0.00s]
[OK, 0.00s]

c.Dump to file:
1.Direct expression result: "example.qcnf.qbm.direct" [OK, 0.00s]
[OK, 0.00s]

[OK, VALID, 0.01s]

The file “example.qcnf.qbm.direct” now contains a single line of text:

<3,5,6>(-1,4) = <T,F,wT>

We could have requested the evaluation of expression(s) rather than single variables. For exam-
ple, by issuing:

ozziKs -eval "<3, -6, xor(3,-6), and(-3,implies(-5,6))>(1)" \
-dump direxp example.qcnf.qbm

we request to evaluate the four expressions 3, −6, xor(3,−6), and and(−3, implies(−5, 6))
over 1, i.e. over all the scenarios in which 1 is true. In the dump file we read the answer:

<3,-6,xor(3,-6),and(-3,implies(-5,6))>(1) = <F,wF,wF,wT>

It is possible to collect several expressions to be evaluated inside some textual file, and then
request to evaluate them all. For example, we can issue the command:

ozziKs -eval "./myExpressions.txt" example.qcnf.qbm

...where “myExpressions.txt” is a pure-text file whose content is shown in Figure 5. When
ozziKs terminates, a new file “myExpressions.txt.result” exists, whose content is de-
picted in Figure 6: The two files are identical, but the results of each expression evaluation have
been inserted at proper places.

23

**
* This is a test file for ozziKs’ expression evaluation engine *
**

The formula whose certificate we query is:

\forall 1,2 \exists 3 \forall 4 \exists 5,6
(-1 2 -3) and (-1 -2 -4 5) and (-1 4 -5) and
(1 3 6) and (1 -4 -5) and (1 4 5) and
(-1 -3 -6) and (-2 5 6) and (1 -5 -6)

The empty universal assignment:
<3,5,6>() <--- here we expect that no variable can get

a definite value (as the outermost scope
is universal)

All the partial assignment of size 1:
<3,5,6>(1)
<3,5,6>(-1)
<3,5,6>(2)
<3,5,6>(-2)
<3,5,6>(4)
<3,5,6>(-4)

All the partial assignment of size 2:
<3,5,6>(1, 2)
<3,5,6>(1,-2)
<3,5,6>(-1, 2)
<3,5,6>(-1,-2)
<3,5,6>(1, 4)
<3,5,6>(1,-4)
<3,5,6>(-1, 4)
<3,5,6>(-1,-4)
<3,5,6>(2, 4)
<3,5,6>(2,-4)
<3,5,6>(-2, 4)
<3,5,6>(-2,-4)

All the partial assignment of size 3:
<3,5,6>(1, 2, 4) // here it can only be T,F or DC
<3,5,6>(1, 2,-4) // here it can only be T,F or DC
<3,5,6>(1,-2, 4) // here it can only be T,F or DC
<3,5,6>(1,-2,-4) // here it can only be T,F or DC
<3,5,6>(-1, 2, 4) // here it can only be T,F or DC
<3,5,6>(-1, 2,-4) // here it can only be T,F or DC
<3,5,6>(-1,-2, 4) // here it can only be T,F or DC
<3,5,6>(-1,-2,-4) // here it can only be T,F or DC

Figure 5: A text file containing direct expressions to be evaluated over example.qcnf.qbm

24

**
* This is a test file for ozziKs’ expression evaluation engine *
**

The formula whose certificate we query is:

\forall 1,2 \exists 3 \forall 4 \exists 5,6
(-1 2 -3) and (-1 -2 -4 5) and (-1 4 -5) and
(1 3 6) and (1 -4 -5) and (1 4 5) and
(-1 -3 -6) and (-2 5 6) and (1 -5 -6)

The empty universal assignment:
<3,5,6>() = <?,?,?> <--- here we expect that no variable can get

a definite value (as the outermost scope
is universal)

All the partial assignment of size 1:
<3,5,6>(1) = <F,?,wT>
<3,5,6>(-1) = <T,?,?>
<3,5,6>(2) = <?,?,?>
<3,5,6>(-2) = <?,?,wF>
<3,5,6>(4) = <?,?,wT>
<3,5,6>(-4) = <?,?,?>

All the partial assignment of size 2:
<3,5,6>(1, 2) = <F,?,wT>
<3,5,6>(1,-2) = <F,wF,DC>
<3,5,6>(-1, 2) = <T,?,?>
<3,5,6>(-1,-2) = <T,?,wF>
<3,5,6>(1, 4) = <F,wT,DC>
<3,5,6>(1,-4) = <F,F,wT>
<3,5,6>(-1, 4) = <T,F,wT>
<3,5,6>(-1,-4) = <T,T,F>
<3,5,6>(2, 4) = <?,?,wT>
<3,5,6>(2,-4) = <?,?,?>
<3,5,6>(-2, 4) = <?,wF,DC>
<3,5,6>(-2,-4) = <?,?,wF>

All the partial assignment of size 3:
<3,5,6>(1, 2, 4) = <F,T,DC> // here it can only be T,F or DC
<3,5,6>(1, 2,-4) = <F,F,T> // here it can only be T,F or DC
<3,5,6>(1,-2, 4) = <F,DC,DC> // here it can only be T,F or DC
<3,5,6>(1,-2,-4) = <F,F,DC> // here it can only be T,F or DC
<3,5,6>(-1, 2, 4) = <T,F,T> // here it can only be T,F or DC
<3,5,6>(-1, 2,-4) = <T,T,F> // here it can only be T,F or DC
<3,5,6>(-1,-2, 4) = <T,F,DC> // here it can only be T,F or DC
<3,5,6>(-1,-2,-4) = <T,T,F> // here it can only be T,F or DC

Figure 6: A text file containing direct expressions and their evaluation outcome (over
example.qcnf.qbm)

25

Example 7: Evaluation of inverse expressions.

Suppose we want a graphical representation of the universal scenarios in which we observe a
DONT-CARE condition for at least one of the existential variables 5 and 6 in the sat-certificate
for example.qcnf we extracted at Example 4. We issue:

ozziKs -eval "or(dc 5, dc 6)" -dump exp=dot example.qcnf.qbm

From the feedback we get:

1.Processing "sat.qdimacs.qbm"...
a.Certification
1.Consistency check [0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%] [OK, 0.00s]
[OK, Verification skipped as requested, 0.01s]

b.Evaluation (inverse)
1. or(dc(5),dc(6)) = 50% [OK, 0.00s]
[OK, 0.00s]

c.Dump to file:
1.DOT representation: "example.qcnf.qbm.exp.dot" [OK, 0.00s]
[OK, 0.00s]

[OK, VALID, 0.01s]

... we know (line 1.b.1) that in half the scenarios this will be the case. We are also told (line
1.c.1) that the file “example.qcnf.qbm.exp.dot” contains a DOT representation of all
such cases, which once rendered via graphviz appears like in Figure 7.

If the evaluation of multiple expressions is required in the same -eval argument (by employing
the syntax described in Section 4.4), then all the roots describing the result of such expressions
are represented in a single forest when exp=bdd or exp=dot are passed to -dump, while a
different file dump for each expression is produced by using exp=bdds or exp=dots.

 a1

 a2

 a4

 or(dc(5),dc(6))

1

2.1 2.2

4

1

Figure 7: DOT representation for the scenarios in which at least one out of var. 5 and var. 6 are
in a DONT-CARE condition in the (complete) sat-certificate “example.qcnf.qbm”.

26

To obtain a CNF representation of the scenarios where or(dc(4), dc(5)) holds, we ask:

ozziKs -eval "or(dc 4, dc 5)" -dump exp=cnf example.qcnf.qbm

The content of the DIMACS file “sat.qdimacs.qbm.exp.cnf” we obtain as a result is as
follows (some comments have been removed):

c sKizzo CNF expression dump file
c QBModel: sat.qdimacs.qbm
c Expression: or(dc(5),dc(6))

.
.
.

p cnf 4 3
1 4 0
1 -2 0
-1 -2 4 0

We recognize in this file a CNF on the (universal) variables {1, 2, 4} whose models (in the SAT
sense) are all and only the universal scenarios in which the required condition holds.

With respect to the evaluation of inverse expressions, ozziKs also does the following things:

• Allows us to request the evaluation of multiple expressions at once;

• Allows us to provide the input expression(s) in a textual file, like we did in Example 6;

• Provides a slightly different representation (similar to the one described in Example 4) for
expressions that—unlike the case depicted in Figure 7—present DONT-CARE conditions.

For example, by issuing the command:

ozziKs -v 4 -eval inverse -dump exp example.qcnf.qbm

where the content of the textual file “inverse” is depicted in Figure 8, we request to dump to
file in all the formats the results of the evaluation of all the expressions contained in such file.

**
* This is a test file for ozziKs’ expression evaluation engine *
**

The formula whose certificate we query is:

\forall 1,2 \exists 3 \forall 4 \exists 5,6
(-1 2 -3) and (-1 -2 -4 5) and (-1 4 -5) and
(1 3 6) and (1 -4 -5) and (1 4 5) and
(-1 -3 -6) and (-2 5 6) and (1 -5 -6)

Which are the DONT-CARE condition of each existential variable?
<dc(3),dc(5),dc(6)>

What is the truth value of the xor of -5 and 6 in each scenario?
xor(3,6)

Figure 8: A text file containing inverse expressions to be evaluated over example.qcnf.qbm

27

We obtain the following on-screen feedback:

1.Processing "sat.qdimacs.qbm"...
a.Certification

1.Consistency check [0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%] [OK, 0.00s]
[OK, Verification skipped as requested, 0.01s]

b.Evaluation (inverse)
1. <dc(3),dc(5),dc(6)>
a. dc(3) = never [OK, 0.00s]
b. dc(5) = 12.5% [OK, 0.00s]
c. dc(6) = 50% [OK, 0.00s]
[OK, 0.00s]

2.Dump to file
a.BDD representation: "inverse.result.line14.exp.bdd" [OK, 0.00s]
b.CNF representation: "inverse.result.line14.1.exp.cnf" [OK, 0.00s]
c.CNF representation: "inverse.result.line14.2.exp.cnf" [OK, 0.00s]
d.CNF representation: "inverse.result.line14.3.exp.cnf" [OK, 0.00s]
e.DOT representation: "inverse.result.line14.exp.dot" [OK, 0.00s]
[OK, 0.00s]

3. xor(3,6)
a. xor(3,6) = [37.5%:12.5%] [OK, 0.00s]
[OK, 0.00s]

4.Dump to file
a.BDD representation: "inverse.result.line17.exp.bdd" [OK, 0.00s]
b.CNF representation: "inverse.result.line17.true.exp.cnf" [OK, 0.00s]
c.CNF representation: "inverse.result.line17.false.exp.cnf" [OK, 0.00s]
d.DOT representation: "inverse.result.line17.exp.dot" [OK, 0.00s]
[OK, 0.00s]

[OK, 0.01s]
c.Dump to file:

1.Expressions [OK, Peformed on-the-fly during evaluation, 0.00s]
[OK, 0.00s]

[OK, VALID, 0.02s]

where:

• Lines 1.b.1.(a-c) tells us that 3 has no DONT-CARE condition, while 5 and 6 are DONT-
CAREs in 12.5% and 50% of the scenarios respectively.

• Lines 1.b.2.(a-e) give feedback about the dumps to file. Files relative to different expres-
sions in the same input source are distinguished by including in their name the line number
at which the current expression was found. The content of inverse.result.line14.
exp.dot is depicted in Figure 10. A CNF for each expression is also dumped.

• Line 1.b.3.a says xor(3,6) = [37.5%:12.5%]. This means that xor(3, 6) is true in
37.5% of the scenarios, is false in 12.5% of the scenarios, hence it is a DONT-CARE con-
dition in the remaining 50% of cases, as confirmed by the inverse.result.line17.
exp.dot version depicted in Figure 11. In this graphical representation the direct and the
negated root of the expression are reported separately, due to the presence of DONT-CARE
conditions, as opposed to what happens in Figure 7.

• Lines 1.b.4.(b-c) show that—as opposed to previous cases—two CNFs are dumped (in-
stead of one) to completely capture the behavior of expressions with a non-empty set of
DONT-CARE conditions.

• The input file inverse is translated into the output file inverse.result depicted in
Figure 9.

28

**
* This is a test file for ozziKs’ expression evaluation engine *
**

The formula whose certificate we query is:

\forall 1,2 \exists 3 \forall 4 \exists 5,6
(-1 2 -3) and (-1 -2 -4 5) and (-1 4 -5) and
(1 3 6) and (1 -4 -5) and (1 4 5) and
(-1 -3 -6) and (-2 5 6) and (1 -5 -6)

Which are the DONT-CARE condition of each existential variable?
<dc(3),dc(5),dc(6)> = <never,12.5%,50%>

What is the truth value of the xor of -5 and 6 in each scenario?
xor(3,6) = [37.5%:12.5%]

Figure 9: A text file containing inverse expressions and their evaluation outcome (over
example.qcnf.qbm)

 a1

 a2

 a4

 dc(3) dc(5)

1

 dc(6)

1.2 1.1

2.12.2

4

Figure 10: DOT representation for the DONT-CARE conditions of the existential variables in
the sat-certificate “example.qcnf.qbm”.

 a1

 a2

 a4

 xor(3,6) !xor(3,6)

1.1 1.2

2.2

4

2.1

1

Figure 11: DOT representation for truth value of xor(3, 6) in the sat-certificate
“example.qcnf.qbm”.

29

Appendix A: QBF certificates
The term “certificate” has a fairly general meaning, originating in language recognition and com-
plexity theory. Once verified, a certificate proves that the string it refers to actually belongs to
a language of interest. Applied to logic, the term denotes any means of providing evidence of
(un)satisfiability for a given statement, other than a refutationally-compete deductive approach.
In essence, we verify that a given formula belongs to the language of (un)satisfiable statements.

The most natural certificate of satisfiability (sat-certificate) for a QBF formula is an explicit
representation of any of its models. A formula is indeed satisfiable if and only if some model
makes it evaluate to true. What we use in ozziKs as a QBF sat-certificate is indeed a compact
BDD-based representation of one such model.

A certificate provides solver-independent evidence of satisfiability. In addition, it can be
inspected to gather explicit information about the semantics of the formula.

For example, let us consider the formula

∀a∃b∀c∃d.M(a, b, c, d)

where a, b, c and d are propositional variables, and M(a, b, c, d) is a matrix (a conjunction of
clauses) mentioning the variables a, b, c, d. This QBF is true iff two functions exists:

1. A function b = b(a) computing the truth value of b as a function of the truth value of a

2. A function d = d(a, c) computing the value of d as a function of the truth value of a and c

... such that M(a, b, c, d) is satisfied by the assignment a = v1, b = b(v1), c = v2, d = d(v1, v2)
for every v1 ∈ {T,F} and every v2 ∈ {T,F}. These two functions give us a strategy to satisfy
the matrix, i.e. a way to make it evaluate to TRUE whichever the truth values for the universal
variables. As a special case, notice that if the outermost scope is existential, variables laying
therein have a constant value in any certificate.

What ozziKs does is to produce a compact, BDD-based representation of such a set of functions.
Once we have the set of functions, we can (1) certify the satisfiability of the QBF problem by
checking the matrix against the strategy (ozziKs does this for us), and (2) query the certificate
to obtain information on the original encoded problem (for example, if we encoded a game in
the QBF and asked about the existence of a winning strategy, the certificate gives us that strategy).

Let us consider these two aspects.

• The validity of a certificate can be verified by whoever is knowledgeable about the eval-
uation apparatus of the logic (deductive capabilities are unnecessary), independently of
how it was obtained. The meaning of a successful verification is twofold: we are ensured
(1) that the formula is sat, and (2) that the certificate encodes a model. Conversely, the
verification fails when either the certificate is invalid or the formula is unsat (we cannot
tell right away which circumstance occurred).

• A certificate exemplifies a definite scenario in which QBF-encoded problems reveal their
satisfiability. For example, a sat-answer suffices to know that at least one winning strategy
exists in a QBF-encoded two-player game, but it takes a certificate to exhibit an actual
strategy. Let us consider the famous game “Connect-4”. It is known that the player who
moves first can always win. The rules of the game and the existence of a winning strat-
egy can be encoded into a QBF instance f4, expected to be sat. Which is the winning
strategy? A certificate would disclose such information: the first player would prevail by
just inspecting the certificate at each move, whatever the opponent does. Notice however
that stand-alone certificates convey no self-contained semantics, as the meaning of each
variable in the encoding is a piece of information held by the “encoders”.

30

More formal definitions and properties are discussed in what follows (adpted from [3]), where
the following conventions are adopted. Given a QBF F , we denote by F̃ its matrix, by var∃(F)
(var∀(F)) the set of existentially (universally) quantified variables in F , and by var∀(F, e) ⊆
var∀(F) the set of universal variables preceding (or dominating) e ∈ var∃(F) in the prefix (we
pose δ(e) .= |var∀(F, e)|). Given a CNF matrix F̃ , the formula F̃ ∗ l is the CNF obtained by
assigning the literal l, i.e. by removing from F each ¬l literal and each clause containing l.
This notation is readily extended to sets of literals. A matrix F̃ is satisfied by a set of literals M
(written M |= F̃) when F̃ ∗M is the empty formula.

A.1 Certificate representation

QBF models can be represented explicitly by employing data structures such as trees or truth ta-
bles. Or, we may pursue compactness at the expense of managing an implicit representation14 re-
quiring computation to yield values. An ideal certificate should be compact (easy to manage) and
explicit (easy to verify and query). A successful tradeoff is obtained by employing Binary Deci-
sion Diagrams [5]. We consider their reduced ordered version (ROBDDs, or BDDs henceforth)
with complemented arcs. A BDD E representing a total function F (u1, u2, . . . , un) : Bn → B
is a directed acyclic graph with one root (labeled by F) and one sink node (labeled “1”).

a

b

1

F(a,b,c)

c

b

Each internal node is labeled by one variable in U = {u1, u2, . . . un}, and always
has two children, one attached to the outcoming then-arc, the other to the else-
arc. The else-arc may or may not be complemented. A unique path from the
root to the sink is identified by assigning a value to each variable in U : The
then-arc is chosen for variables assigned to 1, the else-arc is followed otherwise.
The function F represented by E evaluates to 1 on 〈ψ1, ψ2, . . . , ψn〉 ∈ Bn iff
an even number of complemented arcs is encountered along the path defined by
ψ1, ψ2, . . . , ψn.
As an example, let us consider the BDD aside, where solid arrows denote then-
arcs, while dashed (dotted) arcs are used for regular (complemented) else-arcs. It
represents a binary function F (a, b, c) of three binary variables a, b and c. It is,
for example, F (0, 1, 1) = 1 and F (1, 1, 1) = 0. The represented function may be
written as F = b∧ (a∨ c)∧ (¬a∨¬c). In a set-oriented interpretation, this BDD
represents the one-set of F , i.e. the set having F as characteristic function. In our
case, it stands for the set {〈0, 1, 1〉, 〈1, 1, 0〉} where F evaluates to 1.

The BDDs we utilize are ordered and reduced: The same variable ordering is followed along
each path, and no two nodes representing the same set exist, so that each function has only one
canonic representation. Furthermore, the version with complemented arcs is such that the set S
is denoted by the same node as S (referred to with a complemented arc).

The BDD way of representing sets is regarded as symbolic in that it avoids the explicit enu-
meration of sets’ elements in favor of a more abstract, diagram-based way of computing char-
acteristic functions. Such representations may be exponentially more succinct than explicit ones
(see [8]), and all the operations on the sets/functions they represent (union/disjunction, intersec-
tion/conjunction, etc.) can be performed by manipulating the involved BDDs [5]. With a small
abuse of notation, we treat BDDs as if they were the sets they represent. For example, x ∈ E is
an element in the subset of Bn individuated by E .

In collections of BDDs, canonicity spans over their set of nodes as a whole. This allows
the sharing of structural information among diagrams. A BDD in such a set of interconnected
diagrams—a forest—is identified by a (complemented) arc pointing to its root node.

14In [6] propositional formulas and QBFs with free variables are used. Implicitness is not an issue for the authors as
they focus on characterizing classes of models/formulas.

31

Definition A.1 (QBF sat-certificate, validity) A sat-certificate for a QBF F with var∃(F)=
{e1, . . . , em}, var∀(F)={u1, . . . , un}, and δi=δ(ei) is a forest of BDDs containing two roots
〈E+
i , E

−
i 〉 for each i in [1,m]. Both E+

i and E−i are defined over var∀(F, ei)={u1, . . . , uδi
}.

The certificate
C(F) = [〈E+

1 , E
−
1 〉, 〈E

+
2 , E

−
2 〉, . . . , 〈E+

m, E−m〉]

is consistent when ∀i∈[1,m] it is E+
i ∩E

−
i =∅. It is valid for F when for any 〈ψ1, . . . , ψn〉 ∈ Bn

the formula F̃[u1=ψ1,...,un=ψn] is satisfied by {ei = s(i)(ψ1, . . . , ψδi
), i ∈ [1,m]}, where the

functions s(i) : Bδi → B are defined as

s(i)(ψ1, . . . , ψδi
) =

1 if 〈ψ1, . . . , ψδi〉 ∈ E+
i

0 if 〈ψ1, . . . , ψδi
〉 ∈ E−i

undef. otherwise

In essence, a sat-certificate is a compact but explicit representation of the dependencies that have
to exist between existential (dependent) and universal (independent) variables in order to satisfy
the matrix whichever the universal hypothesis.

Lemma A.1 If C(F) is valid for a QBF F , then F is satisfiable. Every satisfiable QBF has at
least one valid certificate.

Proof sketch. A QBF is satisfiable iff it has at least one model, i.e. iff we find at least one
tree-like structure (like the one introduced in Section 2), such that for every assignment U =
[u1 =ψ1, . . . , un =ψn] to the universal variables the set of existential literals collected along
the branch individuated by U satisfies F̃ ∗ U . Given a consistent certificate C for F , we insert
the literal ei into the label of the node reached following the u1 = ψ1, . . . , uδi

= ψδi
path iff

〈ψ1, . . . , ψδi
〉 ∈ E+

i (and, dually, ¬ei appears in the label iff 〈ψ1, . . . , ψδi〉 ∈ E−i). By con-
struction, if the certificate is valid according to the notion of validity given in Definition A.1, the
tree-like structure obtained is a model. �

For example, a valid sat-certificate for the QBF we used as an example at Page 21:

∀a∀b∃c∀d∃e∃f. (¬b∨e∨f)∧ (a∨c∨f)∧ (a∨d∨e)∧(¬a∨¬b∨¬d∨e)∧
(¬a∨b∨¬c)∧ (¬a∨¬c∨¬f)∧ (a∨¬d∨¬e)∧ (¬a∨d∨¬e)∧ (a∨¬e∨¬f).

is depicted in Figure 12 (to be compared with the version automatically extracted by ozziKs,
depicted in Figure 4, Page 21).

a a

1

c+(a)

d
b

a

c-(a) e+(a,b,d) e-(a,b,d) f+(a,b,d) f-(a,b,d)

a a

b

Figure 12: A BDD-based sat-certificate for the QBF at the end of Section A.1.

32

A.2 Certificate verification

The first thing we wish to do with a consistent certificate C for F is to verify its validity.
We check that by choosing the truth values of the existential variables according to what the
certificate suggests, we always satisfy the matrix.

An easy but impractical way of checking a certificate would be to check that M produces
a satisfying assignment under all the possible universal hypotheses. Fortunately, the symbolic
nature of the certificate helps us to perform a much more efficient, clause by clause, BDD-based
verification, which is what the verification engine inside ozziKs actually does.

Let us use the exclusive or “⊗" to construct literals out of variables (ϕ⊗v means v when
ϕ = 0, and ¬v when ϕ = 1).

Lemma A.2 The algorithm checkValidity answers TRUE on 〈F, C〉 if and only if C is a valid
certificate for F .

Let us consider, for example, the clause¬u1∨e1∨u2∨¬e2∨e3 under the prefix ∀u1∃e1∀u2∃e2∃e3.
The only relevant universal hypotheses for this clause are those assigning both u1=1 and u2=0:
All the others immediately satisfy the clause via one of its universal literals. So, it remains to
verify that under the assignment [u1=1, u2=0] at least one of the three remaining literals in the
clause is true, i.e. that every universal hypothesis containing u1 = 1, u2 = 0 falls within the
one-set of at least one out of E+

1 (for e1), E−2 (for ¬e2), and E+
3 (for e3). This is a two-step check:

First, we collect the universal hypotheses E = E+
1 ∪ E

−
2 ∪ E

+
3 under which the clause is satisfied

by some existential literal. Then, we check that all the hypotheses E (in which no existential
literal satisfies the clause) assign either u1 = 1, or u2 = 0, or both, so that the clause is satisfied
by a universal literal.

Validity check is a coNP-complete problem [6].

Function checkValidity(QBF F , certificate C)

Let var∃(F) be {e1, . . . , em};
Let var∀(F) be {u1, . . . , un};
Let C be [〈E+

1 , E
−
1 〉, 〈E

+
2 , E

−
2 〉 . . . , 〈E+

m, E−m〉];
forall the clauses Γ ∈ F̃ do

Let ui1 , . . . , uih ⊆ var∀(F) be the universal variables mentioned in Γ;
Let ej1 , . . . , ejk ⊆ var∃(F) be the existential variables mentioned in Γ;
Let Γ be ψ1⊗ui1 ∨ · · · ∨ ψh⊗uih ∨ φ1⊗ej1 ∨ · · · ∨ φk⊗ejk ;

//The set of indexes/scenarios in which Γ is satisfied by some of its existential literals:
E ← (∪φi=0E+

ji
) ∪ (∪φi=1E−ji);

//The set of indexes/scenarios in which Γ is not satisfied by any of its existential
literals:
E ′ ← E ;

//The subset E ′′ ⊆ E ′ of cases in which this clause exists (i.e. it is not satisfied by any
universal literal)
E ′′ ← E ′[ui1=ψ1,...,uih

=ψh];

//If any such case exists, the clause, hence the formula, is false.
if E ′′ 6= ∅ then return FALSE;

return TRUE;

33

A.3 Certificate construction

One may think it is a good idea to construct and maintain a certificate during the decision
procedure. However:

1. Most of the information that is necessary to maintain to build a certificate is not required
to continue the decision procedure;

2. The amount of information one would need to store may not fit in main memory;

3. On-the-fly certificate reconstruction may be wasting a lot of time (in constructing “sub-
certificates” that later on turn out to be invalid);

4. For decision procedures not based on search (but e.g. on resolution, skolemization), an
on-the-fly “forward” reconstruction procedure is completely unnatural.

These apparent drawbacks suddenly turn into advantages. They indeed suggest to decouple
evaluation from model reconstruction, with almost no overhead for the former and a clear seman-
tics for the latter. The two meshes of the chain are connected through an inference log, produced
by the solver (sKizzo in our case), and subsequently read by a model reconstructor (ozziKs in
our case). Once a sat-log (i.e. a log documenting all the inference steps taken to decide a true
QBF instance) is known, the reconstructor comes into play. It trusts the solver about the log
being a sat-log, and parses it backward, reasoning by induction on the number of entries:

Base case. At the end of the inference trace we find the empty formula Ft, satisfied by an empty
modelMt.

Inductive case. Given a modelMi forFi, the reconstructor computes a modelMi−1=R(Mi,opi)
forFi−1 by reasoning on how the instantiation opi (of some underlying inference scheme)
turned Fi−1 into Fi.

This leads inductively to a modelM0 for F , hence to a certificate for F , once the function R
has been properly defined. The definition of this function depends on the kind of inference rules
we may find in the log: Each one needs to be “inverted” in a peculiar way. ozziKs knows the
inference strategies and rules employed by sKizzo, and is able to reconstruct models whatever
sKizzo did to solve the instance. In particular, ozziKs is able to interpret:

• The (symbolic) assignment/substitution/resolution steps that take place while sKizzo rea-
sons on the symbolic skolemization of the instance. The way to do this is described in [3].

• The (ground) assignment/resolution steps that take place on the original QBF representa-
tion.

• The compilation-to-SAT steps (followed by the invocation of some SAT solver) that sKizzo
performs as soon as the ground expansion of the current subformula is affordable.

• The branching steps that take place in DPLL-like reasoning;

• Any sequential or nested combination of the above mentioned reasoning styles.

34

Appendix B: Content and format of input and output files
Several file types, with different contents and formats, play a role in the solution and certifica-
tion of a QBF instance, according to the following table (notice that files related to the dump of
expression evaluation results have already been discussed and are not reported here).

Filename extension Content Output of Input for Format
.qdimacs A QBF instance F in

prenex conjunctive nor-
mal form

Some manual/automatic
compilation

The QBF solver
(sKizzo)

QDIMACS

.qdimacs.sKizzo.log An inference log record-
ing the solving process
for F

sKizzo when -log is
specified

The inductive recon-
struction engine of
ozziKs

sKizzo log for-
mat v1.3

.qdimacs.qbm A sat-certificate C(F)
(in a format amenable to
be verified)

The inductive recon-
struction engine of
ozziKs

The verification engine
of ozziKs

sKizzo/ozziKs
QBM format
v1.3

.qdimacs.qbm.dot A sat-certificate C(F)
(in a format amenable to
be visualized)

The inductive recon-
struction engine of
ozziKs

A DOT file visualizer
like Graphviz

DOT

.qdimacs.qdc A validity preserving as-
signment to the existen-
tial variables in the out-
ermost scope (if any)

The inductive recon-
struction engine of
ozziKs

External procedure re-
quiring valid outermost
assignments

DIMACS 1.1

Three of these file types are specific to the sKizzo/ozziKs couple (i.e. inference logs, QBM
certificates, DOT certificates). The next three subsections briefly describe them.

B.1 Inference logs

Inference log files are actually textual files whose content can be easily inspected. They
are written in a language shared between the solver (sKizzo) and the reconstructor (ozziKs), of
which we do not provide here a formal syntax and semantics.

Rather, we briefly comment on an example, which is a (possible) inference log for the de-
cision process of our sample instance s27_d2_s.qcnf, an excerpt of which is depicted in
Figure checkValidity. We observe that:

• In the preamble of each inference log some general information are provided, like

– the name of the formula the certificate refers to,

– the version of the inference-log language, and

– the number and types of the variables in the instance.

• The bulk of the log is a numbered sequence of records—chronologically dumped—each
one recording information about one inference step. In our example, there are 105 records.
The last record for a TRUE instance is always and “END” record registering the final
positive outcome of the evaluation.

• Records of different types exist. In our example:

#1,#2 Two records reporting about a “ground” variable assignment (by UCP or PLE).

#10 A ground variable elimination step via q-resolution (QRES).

#19 A symbolic assignment, i.e. an assignment in the space of symbolic formulas (by
SUCP, or SPLE, or SHBR). Notice how a BDD is dumped as well in this record
(through the DDDMP library).

#93 A symbolic equivalence substitution step (by SER), reporting involved variables, sim-
plified clauses, and reference BDD.

#103 A compilation to SAT of a sub-problem, specifying what exactly has been compiled,
and which is the solution found by the SAT solver.

35

sKizzo log file, 1.3
created on Wed Nov 1 11:48:36 2006
formula: "s27_d2_s.qcnf"
dump format: text
vars: (66,10)
universals: 30 31 32 33 34 35 36 37 38 39
int/ext mapping: 4 5 6 7 1 2 3 9 10 11 12

13 14 15 16 17 32 33 34 35 37 38 39 40 41
42 43 44 45 18 19 20 21 23 25 26 27 28 29
60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85

#1: G_ASSIGN [0]
-7

#2: G_ASSIGN [22]
52

. . .

#10: G_RES [141]
27 3 2
2 24 27
2 26 27
3 15 22 27
3 -24 -26 -27
2 -22 -27

. . .

#19: S_ASSIGN [180]
59
.ver DDDMP-2.0
.mode A
.varinfo 0
.nnodes 5
.nvars 11
.nsuppvars 4
.ids 6 7 9 10
.permids 1 10 9 8
.nroots 1
.rootids -5
.nodes
1 T 1 0 0
2 7 3 1 -1
3 9 2 2 -1
4 10 1 3 -1
5 6 0 4 1
.end

. . .

#93: S_EQUIV [197]
65 29 1
2
2 29 -65
2 -29 65
.ver DDDMP-2.0
.mode A
.varinfo 0
.nnodes 3
.nvars 11
.nsuppvars 2
.ids 3 8
.permids 1 3
.nroots 3
.rootids -3 -3 -3
.nodes
1 T 1 0 0
2 8 1 1 -1
3 3 0 1 2
.end

#103: SAT_ENCODING [180]
symbVar: 55(20) cnfVar: 546
0 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1
1 1

. . .

1 1
1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
var 1: (1,1)
0
(1)

var 2: (2,1)
0
(2)

var 3: (3,1)
0
(3)

var 4: (4,1)
0
(4)

var 9: (5,1)
0
(5)

var 15: (6,1)
0
(6)

var 16: (7,1)
0
(7)

var 17: (8,1)

. . .

0
(13)

var 24: (14,1)
0
(14)

var 25: (15,1)
0
(15)

var 26: (16,1)
0
(16)

var 28: (17,1)
0
(17)

var 29: (18,1)
0
(18)

var 61: (19,8)
10 30 31 32 33 34 35 36 37 38 39
1 1 2 0 0 0 0 0 0 1 (19)
1 1 2 1 0 0 0 0 1 1 (21)
1 0 2 1 0 0 1 1 1 0 (23)
1 0 2 0 0 0 1 1 0 1 (25)
0 1 2 0 1 0 0 0 0 1 (27)
0 1 2 1 1 0 0 0 1 1 (29)
0 0 2 1 1 0 1 1 1 0 (31)
0 0 2 0 1 0 1 1 0 1 (33)
var 62: (35,1)
10 30 31 32 33 34 35 36 37 38 39
2 2 2 2 0 2 2 2 2 2 (35)

. . .

#105: END [549]
outcome: TRUE
time: 0.77

Figure 13: Excerpt of an inference log recording the steps taken to decide s27_d2_s.qcnf.

36

• This inference log is a tiny example:

– It mentions only a part of the possible record entries. For example, symbolic reso-
lution and branching DPLL-like steps are missing, as well as control records tracing
rollback and checkpointing mechanisms in the solver.

– Its size is approximately 27 KBytes. Logs for “difficult” instances from applications
may contain millions of steps and may require gigabytes of disk space.

B.2 QBM certificates

QBM certificate files are textual files as well. The way information is organized within one
such file will be discussed considering the content of the QBM certificate of our sample instance
s27_d2_s.qcnf, as depicted in Figure 14:

• All certificates begin with a 6-line prefix having the following format:

QBM file, <VERSION>
solver: <SOLVER-NAME>
formula: <FILENAME>
complete: <IS-COMPLETE>
dump format: <FORMAT>
universals[<N∀>]: <∀-LIST>
existentials[<N∃>]: <∃-LIST>

where:

1. <VERSION> is the version of the certificate format, currently 1.3;

2. <SOLVER-NAME> is the solver that produced the inference log from which the
certificate has been obtained;

3. <FILENAME> is the quote-delimited path of the qdimacs file containing the QBF
instance this certificate refers to, relative to the position of the certificate itself;

4. <IS-COMPLETE> is yes for full certificates (i.e containing the interpretation of
every skolem function) or no for partial certificates (in which some skolem interpre-
tations have been pruned away via the -var switch);

5. <FORMAT> at present can only be text

6. <N∀> is the number of universal variables in the formula and <∀-LIST> is the list of
their space-separated names (i.e. numeric codes);

7. <N∃> is the number of existential variables in the formula and <∃-LIST> is the list
of their space-separated names (i.e. numeric codes).

• After the prefix, a textual representation for the forest of BDDs representing the certificate
is dumped. Such dump is performed in the DDDMP-2.0 format15. The DDMP dump is
itself made up of two parts:

– A DDDMP prefix, characterized by lines of text starting with a dot. The last four
lines of such prefix contain the most relevant piece of information. Their format is as
follows:

15DDDMP—which stands for “Decision Diagrams DuMP”—is a library designed by Stefano Quer and Gianpiero
Cabodi (“Politecnico di Torino”, Italy) that works in tandem with the CUDD package (version 2.2.0 or higher). The
DDDMP package defines formats for DD storage on secondary memory, and it contains a set of functions to dump DDs
and DD forests on file, and to load them back. We use the latest version, 2.0.3, released August 01, 2005. For more
information see http://fmgroup.polito.it/quer/research/tool/tool.htm

37

.ids <SUPPORT-LIST>

.permids <SUPPORT-LIST>

.nroots <N-ROOTS>

.rootids: <ID-LIST>

where:

1. <SUPPORT-LIST> is a space-separated list of codes for variables in the support
set of the forest. For certificates in the 1.3 format, .ids and .permids are
always followed by the same list, which is in fact the enumeration of integers
from 1 to <N∀>.

2. <N-ROOTS> is the number of roots (i.e. the number of diagrams, i.e. the num-
ber of trees), inside the forest;

3. <ID-LIST> is a space-separated list of <N-ROOTS> (signed) root names, i.e.
signed integer codes naming internal nodes in the forest (the terminal BDD node
“1” always has code 1, the others are given an increasing code).

The following conventions hold:

∗ There are always exactly twice as much roots in the forest than existential vari-
ables in the formula, i.e. <N-ROOTS> = 2 × <N∃> (cfr. in the example
110 = 55 × 2). This is because (see Appendix A) to each existential variable
two BDDs are associated:
· one positive BDD whose one-set specifies when the variable is true;
· one negative BDD whose one-set specifies when the variable is false16.

∗ The two lists <∃-LIST> and <ID-LIST> are ordered consistently to one another.
This means that the two roots of the BDDs related to the existential variable at
position i in the list <∃-LIST> are given in <ID-LIST> at position 2i (positive
BDD) and 2i + 1 (negative BDD). For example, variable 84 is related to the
BDDs in the forest rooted at −8 and 8.
∗ The two lists <∀-LIST> and <SUPPORT-LIST> always have the same size, and

are consistently ordered. This means that the variable in the support set of the
forest mentioned with code i (in the list of nodes decribed next) is related to the
universal variable at position i in <∀-LIST>.

– The list of nodes in the forest, enclosed between a heading .nodes line and a tailing
.end line. Each line specifies a node, using the following format

<NODE-ID> <SUP-VAR-CODE> <VAR-PERM> <THEN-NODE> <ELSE-NODE>

where:

1. <NODE-ID> is an unique integer code for each node in the forest;
2. <SUP-VAR-CODE> is the code of the decision variable in the support set the

current node refers to, i.e.—indirectly via <∀-LIST>—is the universal variable
related to the current node;

3. <VAR-PERM> is not relevant here
4. <THEN-NODE> is the (signed) integer code of the node pointed by the then-arc

going out from the current node in the forest;
5. <ELSE-NODE> is the (signed) integer code of the node pointed by the else-arc

going out from the current node in the forest.

16For no variable the intersection of such two BDDs can be non-empty. It is possible, however, that the union of the
BDDs is not the full set. This happens for DONT-CARE conditions.

38

QBM file, 1.3
solver: sKizzo-v0.8.2
formula: "./s27_d2_s.qcnf"
complete: YES
dump format: text
universals[10]: 18 19 20 21 23 25 26 27 28 29
existentials[55]: 4 5 6 7 1 2 3 9 10 11 12 13 14 15 16 17 32 33 34 35 37

38 39 40 41 42 43 44 45 60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

.ver DDDMP-2.0

.mode A

.varinfo 0

.nnodes 25

.nvars 11

.nsuppvars 10

.ids 1 2 3 4 5 6 7 8 9 10

.permids 1 2 3 4 5 6 7 8 9 10

.nroots 110

.rootids -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 -1
1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1
-1 1 1 -1 3 -3 -4 4 1 -1 -5 5 1 -1 7 -7 -6 6 1 -1 9 -9 11 -11 13
-13 -14 14 1 -1 15 -15 17 -17 18 -18 20 -20 21 -21 22 -22 -24 24 1
-1 1 -1 1 -1 -25 25 -8 8 1 -1

.nodes
1 T 1 0 0
2 5 4 1 -1
3 1 0 1 2
4 1 0 2 -1
5 10 9 1 -1
6 6 5 1 -1
7 5 4 1 -6
8 8 7 1 -1
9 7 6 1 -8
10 7 6 1 -1
11 6 5 10 1
12 7 6 8 1
13 6 5 1 12
14 2 1 8 -1
15 2 1 1 8
16 9 8 1 -1
17 4 3 16 1
18 6 5 16 1
19 6 5 1 -16
20 4 3 1 19
21 9 8 1 5
22 7 6 1 5
23 9 8 5 -1
24 7 6 23 -1
25 3 2 1 -1
.end

Figure 14: The content of the certificate file s27_d2_s.qcnf.qbm.

39

B.3 DOT certificates

The DOT certificate contains the same information as the corresponding QBM certificate, but
in a format which is amenable to be parsed and rendered by an automatic graph drawing tool like
graphviz.

Here we do not describe the content of the DOT file, but the graphical appearance of the BDD
forest (constituting the certificate) after it has been rendered. We refer to Figure 2 (page 19) and
Figure 3 (page 20), where a total and a partial certificate for our sample formula s27_d2_s.qcnf
are respectively depicted (the latter is obtained by specifying to ozziKs a “-var 71-76”
switch).

Graphic conventions are as follows:

• At the top of the figure a row is depicted containing a list of all the existential (possibly
signed) variable codes. Each variable is enclosed in one box, and each box may contain
more than one variable: All the variable in the same box have the same skolem interpreta-
tion;

• In the leftmost part of the figure a column is depicted listing the names of all the universal
variables in some order;

• All the internal nodes in the figure are choice points. The internal nodes at the vertical
level of one universal variable in the leftmost column are decision nodes associated to that
universal variable;

• Internal nodes always have two outgoing arcs: one then-arc (continuos line) and one else-
arc (dashed line);

• Each arc has a positive (blue colored) or a negative (red colored) sign;

• Each box in the top row has one signed (same color convention as before) continuos out-
going edge heading for some internal node.

To know the truth value of an existential variable e as a function of its dominating universal
variables, we proceed as follows

1. We start from the box in the top row containing the existential variable e;

2. We move downward to reach the sink node 1 through many subsequent choice points (no
more than one per universal variable). If the universal variable u is set to FALSE, we
choose the else-arc at the choice point related to u, if it is set to TRUE we follow the
then-arc.

3. In the end, we obtain a path linking e to 1. We count how many negative arcs we en-
countered along the way. We say that the path as a whole is positive if it contains an even
number of negative arcs, and is negative otherwise.

4. The variable is TRUE if the path is positive, and is FALSE if it is negative.

For cases in which DONT-CARE conditions occur (this does not happen in our sample for-
mula), some existential variable e may appear two times in the top row: once as a positive literal
“e”, once as a negative literal “!e”.

In this case, we compute the sign of both paths, and then apply this rule:

• The e→ 1 path is positive and the !e→ 1 path is negative: e is TRUE;

• The e→ 1 path is negative and the !e→ 1 path is positive: e is FALSE;

• Both paths are negative: e is a DONT-CARE condition;

• Both paths are positive: cannot happen in consistent certificates.

40

References
[1] M. Benedetti. sKizzo’s web site, http://sKizzo.info, 2005.

[2] M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In Proc. of the 11th In-
ternational Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR04), number 3452 in LNCS. Springer, 2005.

[3] M. Benedetti. Extracting Certificates from Quantified Boolean Formulas. In Proc. of 9th
International Joint Conference on Artificial Intelligence (IJCAI05), 2005.

[4] M. Benedetti. sKizzo: a Suite to Evaluate and Certify QBFs. In Proc. of 20th International
Conference on Automated Deduction (CADE05), 2005.

[5] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transaction
on Computing, C-35(8):677–691, 1986.

[6] H. K. Büning and X. Zhao. On Models for Quantified Boolean Formulas. In Proceedings of
SAT’04, 2004.

[7] Fabio Somenzi. Colorado University Binary Decision Diagrams,
vlsi.colorado.edu/∼fabio/CUDD, 1995.

[8] Ingo Wegener. Branching Programs and Binary Decision Diagrams. Monographs on Dis-
crete Mathematics and Applications. SIAM, 2000.

41

Copyright and License

Copyright
Copyright c© 2004-2006
Marco Benedetti

Definitions
• By "SOFTWARE" we mean the software "ozziKs" and the associated documentation files, which

are offered under the terms of this License.

• By "AUTHOR" we mean Marco Benedetti, i.e. the individual who created the SOFTWARE, and
who offers it under the terms of this License.

• By "USER" we mean an individual or entity exercising rights under this License who has not previ-
ously violated the terms of this License with respect to the SOFTWARE, or who has received express
permission from the AUTHOR to exercise rights under this License despite a previous violation.

• By "NONCOMMERCIAL USE" we mean use for research, evaluation, or development for the pur-
pose of advancing knowledge, teaching, learning, or customizing the technology for personal use.
NONCOMMERCIAL USE expressly excludes use or distribution for direct or indirect commercial
(including strategic) gain or advantage.

License
By using the SOFTWARE the USER indicates that he or she has read, understood and will comply with the
following:

• The AUTHOR hereby grants USER nonexclusive permission to use the SOFTWARE for NONCOM-
MERCIAL USE only.

• Permission to copy and redistribute the SOFTWARE is granted so long as no fee is charged, and so
long as the the present unmodified copyright notice (including the disclaimer below) appear in all
the copies made.

• For any other permission (including–but not limited to–the permission to use the SOFTWARE for
commercial purposes, the permission to create/distribute derivative or modified works, etc.) please
contact the AUTHOR at mabene@gmail.com.

Disclaimer
This SOFTWARE is provided "as is". The AUTHOR makes no representations or warranties, express or
implied, including those of merchantability or fitness for any purpose. The AUTHOR shall not be liable
under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect
to any claim by USER or any third party on account of or arising from the use, or inability to use, the
SOFTWARE.

Copyrights and Licenses for Third Party Software Distributed with the SOFT-
WARE
The SOFTWARE contains compiled code written by third parties. Such pieces of software have additional
or alternate copyrights, licenses, and/or restrictions. Namely, the SOFTWARE is statically linked against:

1. The CUDD package, version 2.4.0, by Fabio Somenzi (Department of Electrical and Computer En-
gineering, University of Colorado at Boulder). The CUDD package is copyright of the University of
Colorado at Boulder. The autoritative source of information on the CUDD is:
http://vlsi.colorado.edu/~fabio/CUDD/

2. The DDDMP-2.0 package, version 2.0.3, by Gianpiero Cabodi and Stefano Quer. The DDDMP
package is Copyright (c) 2002 by Politecnico di Torino. The autoritative source of information on
DDDMP is: http://staff.polito.it/stefano.quer/research/tool/tool.htm

42

