Quantifier Trees for QBFs

Marco Benedetii

Istituto per la Ricerca Scientifica e Tecnologica (IRST)
Via Sommarive 18, 38055 Povo, Trento, Italy
benedetti@itc.it

Abstract. We present a method—called quantifier tree reconstruction—that al-
lows to efficiently recoveex-posta portion of the internal structure of QBF in-
stances which was hidden as a consequence of the cast to prenex normal form.
Means to profit from a quantifier tree are presented for all the main families of
QBF solvers. Surprising experiments on QBFLIB instances are also reported.

1 Introduction

Some standard specification language lays at the intersection between researchers de-
veloping theorem provers and those interested in using such tools. For the case of pro-
positional theorem provingzonjunctive Normal Forn{CNF) is ade factostandard.

Entire libraries of CNF instances exist in publically available repositories (such as [17]),
and this makes it possible a share of knowledge which is advantageous to both sides.

For the case of Quantified Boolean Formulas (QBFs) the standard form for instances
is prenexconjunctive normal form. Each instance is comprised of a lipegfixspecify-
ing an arbitrary number of alternations between universally and existentially quantified
variables, followed by a quantifier-fresatrix which is a CNF formula.

Standardization enables a complete decoupling between the production of instances
and their solution, with countless benefits. There are some disadvantages thought. Most
of them stem from the loose of structural information that happens when instances are
flattened onto a CNF representation. Experiments show that the additional structure
present in the original formula could be exploited to achieve gains in solving perform-
ances [26], and this is coherent with considerations on the increase in proof complexity
that a cast to CNF might produce. A radical way to overcome these issues would be to
give up the clause-based representation. This would require (1) to be able to control the
encoding process so to produce non-standard encodings, and (2) to construct a solver
that is able to understand the enriched specification language and to take advantage of
it. Attempts to follow this direction exist for both SAT and QBF solvers (see below).

In this paper, we propose a less demanding and more broadly applicable approach.
We preserve the standard encoding and attempt to recover part of the lost information
ex-postWe focus on QBF instances, which are converted to prenex CNF in two steps:

a. A prenex form is generated by moving all the quantifiers outside an (arbitrarily
shaped) quantifier-free matrix.
b. The matrix is converted into conjunctive normal form.

8 This work is funded by PATRrovincia Autonoma di Trentdtaly), under grant n. 3248/2003.

The latter step is analogous to the one performed to obtain CNF SAT encodings. The
former is concerned with the specificity of quantified formulas, i.e. the existence of al-
ternated universal and existential quantifications. A direct strategy to recover the lost
structure would be to invert both steps in (reverse) order?!) reconstruct some in-
ternal structure out of a flat CNF instance, than'() re-position quantifiers in as deep

as possible positions vianti-prenexingsteps.

We are interested in reverting Stefto some extent, even if the matrix is leftin CNF
form. In essence, it is a matter of extracting a tree-shaped syntactic structure—which
we callquantifier tree—out of a flat prenex conjunctive normal form instance.

The prefix of a QBF instance conveys a relevant part of its semantics: It states which
existential variables are in the scope of which universal variables. In a linear prefix, an
existential variable is in the scope of all the universal variables to its left. So, if an exist-
ential variables; follows another existential variabtg in the left-to-right prefix order,
then necessarily, is in the scope of at least all the universal variables dominating
This condition may impose unnecessarily strong restrictions w.r.t. the intrinsic depend-
encies between existential and universal variables in a given matrix. In Section 3 we
show how to reconstruct tree-shaped dependencies starting form a linear prefix.

Our conservative method overcomes one of the two problems that would arise if
we were to renounce to CNF: It is no longer necessary to define a richer intermedi-
ate language and to guide the encoding process towards producing such format. As a
consequence, the whole set of QBF benchmarks is at our disposal for experimentation.

Yet, the other side of the problem stays inescapable: We are in need for a solv-
ing strategy able to profit from quantifier trees. Fortunately, tree-shaped CNFs essen-
tially retain a clause-based structure. Hence, we can keep all the techniques developed
to efficiently represent clause sets and to reason about them. Three major families of
CNF-based approaches to QBF satisfiability are analyzed in Section 4 to show how
each family can profit from a quantifier tree. Programmatically, experimentation can
be performed on publically available benchmarks. Section 5 is indeed devoted to the
presentation of some surprising experiments over instances in the QBFLIB. The paper
is closed with a few conclusive remarks in Section 6.

Related works. In first order logic, a related technique callethiscopingis adopted
to simplify the conjunctive normal forms produced out of arbitrary FOL formulas for
resolution-based theorem provers [20]. The aim of this technique is to reduce the arity
of Skolem functions by moving quantifiers as inwards as possiblaniiaprenexing
steps [8].Skolemizatioris indeed a key step towards obtaining an universally quanti-
fied clausal forms out of FOL formulas with existential quantifications. In [9] a related
method is presented to generate QBFs in prenex form with a small number of quantifier
alternations. A form ofjuantifier shiftingis leveraged to put similar quantifiers close,
in so as to minimize the number of alternations. The objective is to construct a QBF that
belongs to an as simple as possible complexity class of the polynomial hierarchy [25].
Interesting connections do exist with query optimization in DBMS. QBF can be
stated as relational algebra by representing existential quantifiers by projection operat-
ors, conjunctions by join, and negation by complementation (universal quantifiers may
then be rewritten). Some forms of query optimization minimize the dimension of the
relations to be handled by manipulating tngery treeso that projections appear deep

in the tree[10] (notice that DBMSs are concerned withetialuationof formulas for a
given interpretation—the content of the database—not with its satisfiability).

It is worth noticing that the perspective we adopt here is reversed w.r.t. all the above
approaches. In particular, [20] focuses on constructing a CNF matrix with certain prop-
erties (small number of clauses) given a structured FOL formula. The authors of [9]
start from a non-clausal QBF form, and focus on producing a linear prefix with certain
properties (small number of alternations). Query optimization moves from an existing
non-linear query tree. Conversely, here we start with a linear prefix and a conjunct-
ive normal form matrix, and aim to reconstruct a part of the lost/hidden structure of
the original formula. Many works on recovering (and exploiting) hidden structure from
CNFs have been proposed for the non-quantified case. For example, [21] focuses on re-
covering functional dependencies between variables, while [23] concentrates on using
(external) higher level problem description to generate a good branching sequence for
DPLL-like solvers. A related form of structure uncovering for QBFs is the exploitation
of theGaifman graptof the matrix, used in the QBDD and QMRES algorithms [22], to
decide a good variable ordering for the decision diagrams used in those solvers to per-
form quantifier elimination. Interesting notes on tree-like prefixes are reported in [4].

Attempts to supersede the CNF format by means of solvers able to manage richer in-
put languages exist both in the SAT community [26,16], and in the QBF setting [13,15].
As expected, experimentations suffer from the scarcity of available instances.

2 QBFs and their structure

We consider prenex CNF formulas in the fodh= 9V, Q.V5 ... Q,V, 15, where
the matrix F' is a CNF propositional formula on variablesr(F'), and the prefix
V1oV, ... 9, V, is such thatQ; € {V,3},i = 1,...,nand Q; # Q;11,i =
1,...,n—1,while {V;} is a partition ofvar(F) (i.e.:U,V; = var(F) andV;NV; =
for i # j). We suppose that eadhj is non-empty. Eacl; is calledscope A scopeV;
is existential(universa) if Q; = 3 (Q; = V). The scope (v) of a variable is the index
i such thaty € V;. Variablesv € V; are said to be existentially (universally) quantified
if @; = 3(Q; = V). The set of existentially (universally) quantified variablegiris
denoted byars(F) (vary(F), respectively). We writ€(v) to meanQ, ().

The total ordering’; < V, < --- < V,, among scopes induces a relatiordofmin-
anceRE C var(F) x var(F) which is a partial order relation defined as

(w,v) € RE iff w=wvor o(w) < o)
When no ambiguity arises, we simply write < v (read “w dominates v"). The order
defined by anyR® is not total, butsequentiallytotal: v < worw =< v whenever
o(v) # o(w). Given a subsef of the variables and the partial ordering induced by the
prefix, we defineSup(S) = {v € S|P’ € S.v < v'}. The Sup function is extended to
clauses, in so aSup(I') = {v € var(I')|fv’ € var(I').v < v'}. The universal depth
0(v) of an existential variable is the number of dominating universal variablesdor
0(v) = |vary(F)N{w|w < v}|. Given two binary relations; and=,, we say that<,
is arestrictionof <; whena =<; b impliesa =< b. By fixing an arbitrary order for the
variables in each scope, we restrict the relatioand obtain a total ordering. Though
the results presented here can be lifted to work with a sequentially total order, we limit
to consider the simpler total order case.

3 Building a quantifier tree

In this section we characterize a class of QBF instances which lays in between prenex

CNF instances and general, unrestricted quantified formulas. In particular, we retain a

clause-based negated normal form, but relax the restriction on linearly shaped prefixes.

The formulas we consider have a tree-like structure with clauses attached to the leaves.
Our aim is to show that a tree-like formul&"e¢ with certain interesting properties

can be extracted efficiently out of any given flat QBF instaR¢cguaranteeing the key

propertyF*"¢¢ = F. Our starting point is the notion of quantifier tree.

Definition 1 (Quantifier Tree). A quantifier treet for a QBF F' (whose prefix induces
the partial order< among variables) is a labeled tree with the following properties:

1. Therootis labeled by an “and" connective.

2. Theinternal nodesre labeled by some variable . Existential variables appear
once in the tree, while any two internal nodes not laying on the same branch can
be labeled by the same universal variable. The labeling of nodes is suck tikat
a restriction of the relation<; induced by the tree, where<; w iff a descending
path fromw to w exists int involving at least one universal and one existential node.

3. Eachleaf noden is labeled with a non-empty set of clauséé:) C F, and is
such that the set of variables encountered along the path from the recaliways
containsvar(G(n)). Every clause irf" appears exactly once in the whole tree.

Let us denote byrees(F) the set of quantifier trees fdf. The setrees(F) is never
empty: It is easy to verify that at least the tr °

made up of one single branch linearly replicati

the sequence of variables in the prefix Bfbe-
longs totrees(F') for every F'. In general, furthe
(non-trivial) quantifier trees exist. We focus on sL
“structured” elements afrees(F). As an example
let us consider the following prenex QBF.

Vavb3cVdved f3g3h.(avV—c) A (aVh) A
(ev=dVg) A (maVbV) A (1)
(cvVev=h) A (bV=f) A (aVeVvag)

A gquantifier tree (with more than one branch) i
(1) is depicted in Figure 1. It is straightforward
interpret a quantifier tree as the syntactic tree ¢
a non-prenex quantified boolean formylgf (¢) in-

ductively defined as follows: Fig. 1. A quantifier tree for (1).
gbf(cr) A...Agbf(ep) for the root

qbf(n) = Qo(w)v- (gbf(c1) A... Agbf(cy)) for anode labeled by v
NN T, for a leaf labeled by {I7,..., I}

wherecy, . .., ¢, are the children of..

As an example, by applying thg f function to the tree in Figure 1 we obtain:

gbf(t) =Vav¥b3f. ((maVbV f) A (=bV—f)) A
Vade. (aV —e) A (Vd3g. (eV—-dVg) A (aVeV—g) A (2
(Vedh. (aV h) A (cVeV —h))

A quantifier tree is interesting in that the formula it represents is logically equivalent to
the original QBF it has been extracted from. For example, (2) is equivalent to (1).

Algorithm 1 : An algorithm to construct a quantifier tree for a QBF formula
input : A prenex QBF formulaf
output: A quantifier tree forf

/I First, we create the root
1 r « the root node for the tree;
2 label(r) «— “A7;

/I Then, we create the leaves together with their lists of attached clauses
3 openNodes «— 0;

4 foreachv € vars(f) do
n < new node;

label(n) «— v;

clauses(n) — {I" € F|v € Sup(I')};
free(n) «— 0;

foreachI" € clauses(n) do

10 L foreachy € I" do

11 | free(n) « free(n) Uwvar(y),
12 free(n) — free(n)\ {v};

13 F — F\ clauses(n);

14 openNodes — openNodes U {n};

© 00 N o O

/I Finally, the rest of the tree in a bottom-up way
15 while openNodes # () do

16 n « pick one variable fronbup(openNodes);
17 if free(n) = 0then

18 | father «— r;
else
19 v « pick one fromSup(free(n));
20 if isUniversal(v) then
21 father «— new node;
22 label(father) «— v;
23 openNodes — openNodes U { father};
24 free(father) — free(n)\ {label(n)};
else
25 father < the noden with label(n) = v ;
26 | free(father) « free(father)U free(n) \ {label(n)};

27 f;theT(n) «— father;
28 | openNodes «— openNodes \ {n};

Lemma 1. For each quantifier tree € trees(F), itis F = gbf(t).

We are interested in efficiently extracting quantifiers trees with certain properties. To
this end, we employ Algorithm 1. It works in a bottom-up way, growing the tree from
the leaves to the root. For the sake of simplicity, we assume that to describe a tree it is
sufficient to know the father nodguther(n) of each node:. Each noder is labeled by
a variablelabel(n) as soon as it is created, and has attached a set of variakles:)
updated at each step to represent the variables that occur free in the guyfient A
leaf noden is also labeled by a set of clauséguses(n).

As an example, let us show how the tree in Figure 1 is constructed out of the prenex
QBF (1). The cycle starting at line 4 creates one existential leaf hfudeach variable
in vars(F') and properly distributes the clausesiiramong the leaves. The exact map-
ping between leaves and clauses depends on the sequence of variables selected at line 4,
but, whichever the order, each clause is attached to one of its deepest variable according
to <. In the same cycle the s¢tee(l) of the free variables inbf (1) is attached to each
leafi. The resulting situation for our example is depicted in the first (left-most) column
of Figure 2. The set of nodesen N odes collects all (and only) the nodes whose father

@
?

Fig. 2. Step-by-step extraction of a quantifier tree for (1). The last row reppes N odes.

Logical equivalences Condition

lg. 3z.(09) = ~(Vz.0) 1p. Vz.(0¢) = =(Tz.9)

2q.Vr.p = ¢ 2p. Jx.00 = ¢ x & free(o)
3. V. (p AY) = (Vo.9) A 3p. Jx.(Pp N Y) = 3x.0) AP x ¢ free(y)
40 Yz (¢ V) = (Vo) V o 4. (V) = (z.0) VO

50..Vz.(p AY) = (Ve.¢) A (Vb)) 5p. Fx.(¢ V) = (Fz.0) V (Fz.0)

Table 1. Equivalence-preserving FOL rules that move quantifiers.

has not be decided yet, so each existential leaf belonggdoN odes at the begin-

ning. The subsetup(openNodes) of openNodes contains those nodes that are roots

of completedsubtrees. Each step of the algorithm (each iteration of the cycle starting

at line 15) consists in deciding (line 19) and possibly creating the father node of one
finished subtree rooted at the node selected at line 16, also computing the set of free
variables associated to such node. Figure 2 depicts a sequence of seven steps that leads
to two subtrees with no free variables. They are attached (line 18) to the “and” root (not
depicted) so to obtain the final tree in Figure 1.

Lemma 2. Given a prenex QBIF’, Algorithm 1 generates a quantifier treetirees(F).

To our end, some quantifiers trees are more interesting than others. We characterize
trees on the basis of Table 1, where a number of FOL equivalence-preserving rules
concerned with quantifiers are reported. Such rules have been used, for example, in [9]
to minimize the number of alternations in linear QBF prefixes, and in [20] to obtain
FOL formulas amenable to skolemization. When applied in a left-to-right direction,
each rule indeed pushes a selected quantifier one step inward in the syntactic tree of the
formula (retaining logical equivalence). Let us aaliniscopeda quantifier treg¢ such

that none of the rules in Table 1 can be applieqitf(¢) in a left-to-right direction.

Lemma 3. Algorithm 1 produces miniscoped quantifier trees. It run®imax (| F| -
lvar(F)|, [vars(F)| - |var(F)|?))) requiring O(jvar(F)| - [vars(F)|) memory.

4 How to profit from a quantifier tree

The primary objective of quantifier tree extraction is to help solvers in deciding QBF
instances, according to a semantics which we give informally for the sample formula
(2). That formula is decided by checking whether for any truth value andb a truth

value forc exists such that for all possible truth values fioande, some truth values

can be assigned tf, g andh in so as the matrix always evaluategrie.

QBF solvers are algorithms designed to answer such questions. Most solvers fall
into one of three classes, depending on the strategy they follow to attack the problem.
We briefly review these three approaches and show how each one benefits from a quan-
tifier tree with almost no modification to its core reasoning mechanisms.

4.1 Search-based solvers

Search-based solvers extend the DPLL-approach [7] to the quantified case [6] accord-
ing to Algorithm 2 (many enhancements to this basic scheme have been proposed). Ex-
amples of solvers in this class @solve [11], Quaffle [27], QUBE[15], ZQSAT[13],

andsemprop [19]. These algorithms look for models in the most natural way: They
follow the left-to-right order of the variables in the prefix during a top-down, depth-first
visit of the semantic evaluation tree of the formula. Each nodethis tree is labeled

Algorithm 2: eval

input : A prenex QBF:F = Q1v1.Qava. - - - Quun. F
output: A TRUE/FALSE answer

begin

if F = (then result — TRUE;

else if L ¢ F then result «— FALSE:

else
leftEval — eval (Q2v2.Qsvs. - - Qnvn. (F xv1));
rightEval «— eval (Q2v2.Qsvs. - - - Qnvn. (F % —w1));
if Q1 == Vthen

| result — leftEval andrightEval;

else
| result — leftEval or rightEval;

return result ;
end

Algorithm 3: evalTree

input : A quantifier treet
output: A TRUE/FALSE answer fogbf(t)
begin
if clauses(t) = 0 then eval — TRUE;
else if L& clauses(t) then eval — FALSE;
else
| + connective at the root af
if (I =“A7”)then
eval — TRUE;
foreach child subtreet’ of ¢ do
| eval — eval andevalTree (t);
else
leftEval — TRUE;
foreacht’ € splito(t) do
| leftEval — leftEval andevalTree (t');
rightEval <+ TRUE;
foreacht’ € split,(¢) do
| rightEval < rightEval andevalTree (t');
if | == Vthen
| eval «— leftEval andrightEval;
else
| eval — leftEval or rightEval;

return eval ;
end

Fig. 3. The top-most part of an AND/OR, divide-et-impera search tree for the quantifier tree
t € trees(F) such thaybf(t) = Va((3b(Ve fi(a, b, c)) AVd f2(a,b,d)) AVcVe fi(a,c,e)).

by the cofactored matrid/ « A whereA is the assignment on the pathitpwhile the

root is labeled by the original matrid/. Leaves are labeled by either the empty formula
T (the assignment from the root to the current leaf satisfies the original matrix) or the
empty clausel (the assignment is inconsistent). According to the semantics of quan-
tifiers, an existential variable generatesamode that disjunctively splits its branch,
while universal quantifiers are associatedatwd nodes that split branches conjunct-
ively. A model, if one exists, is a subtree with all the leaves labeled bgxtracted by
choosing one child for each existential node, and both children for conjunctive nodes.

How quantifier trees help search-based solversRather than following the order of
variables in the prefix, search-based solvers can work with the partial order induced by
the internal structure of the quantifier tree. The advantage is that nodes of the tree with
more than one child induce setsdi§joint sub-instances that can be solved in isolation

of one another. For example, suppose we have reached an internal existential node
with two children, having collected the assignmehtalong the path from the root to

n. The formula to be decided has the following shapei¢; A ¢2). Oncev has got

a truth value—say positive—the two instanegs* v and, * v share only universal
variables (if any at all): all the common existential variables have been assigakd in
while the clauses irh; and¢, cannot share existential quantifiers by construction. Thus,
11 * v andy, * v can be solved independently of one another. The whole procedure
follows adivide-et-imperascheme, according to Algorithm 3, whetglit,(¢) is a set

{t},...,t,} of quantifier trees obtained from the det, . .., ¢, } of child subtrees of
as follows: ifv is the variable labeling the root of ¢} is obtained fron; by replacing
each clausé€’ in each leaf node of; by C x v if p =0, and byC x —w if p = 1.

The inductive case now deals with two conceptually different kinds of trees: the
(syntactic) quantifier tree and the (semantic) evaluation tree. The former is explicitly
manipulated as a parameter, the latter is implicitly explored via the recursive structure
of the decision procedure. The two trees are related as each node of the quantifier tree is
to be decided by checking both truth values for the labeling variable (or just one, should
lazy evaluation suffice), while each truth value in turn generates a set of quantifier sub-
trees to be decided. The resulting situation is depicted for a sample case in Figure 3.

4.2 Resolution-based solvers

Rather than search for a model, it is possibledtvethe formula by applying aefut-
ationally complete procedur@uantor [4], QMRE$22], QBDO22]). Such strategy

aims to derive necessary consequences from the given formula, ending up with the
empty clause if and only if the original formula is unsatisfiable. These methods build
upon generalizations of the resolution approach to existential satisfiability, sugh as
resolution[18,5]. There are several possible complete strategies for applying resolution.
For example, we can focus @liminating quantifiersn a right-to-left order (w.r.t. the

order in the prefix). We get rid of existential quantifiers by g-resolution, exmand
universal quantifiers to the two cases they represent. In the sample case of the instance

Ja¥bIc (a VbV) A (DV =) A (aV bV =) A (—aVDb) (3)

we would start by resolving each clause containiagainst each clause containing,
thus obtainingdaVb(a V b) A (—a V b) (Wherec vanished). The universal quantifier
can be eliminated by constructing the conjunction of a d@dy b') A (—a’ vV V') of the
matrix whereb’ has to be assigned taue with a different copy(a” v b") A (—a” vV b"")
whered” is assigned tdalse We obtainda” (a”) A (—a”), which by resolution finally
yields the empty clause: The instance is unsatisfiable.

How quantifier trees help resolution-based solverslf resolution-based solvers were
able to exercise brute force against any instance, there would be no point in quantifier
trees and, more in general, in heuristic reasoning: it would suffice to apply until fixpoint
some complete rule (such as g-resolution). Unfortunately, time and (more often) space
limits prevent most inference sequences form being feasible (intermediate clause sets
blow up), in so as finding a viable solution is the key problem the solver has to face.

Quantifier trees help resolution-based solvers in finding better ways to carry on. Let
us consider, for example, the solhguantor [4]. It follows the right-to-left order of
variables in the prefix: At each step, it chooses whether to eliminate by g-resolution one
of the variables in the deepest existential scSpeor to eliminate byexpansiorone
of the variables in the deepest existential scSpeVariables inSy U S5 are ranked
according to a heuristic cost function and the cheapest one is greedily eliminated.

With a linear prefix there is only one deepest existential scope and one deepest uni-
versal scope. Conversely, within a quantifier tree there are up to one existential/universal

scope per branch. This produces two potential benefits: (1) a possibly wider pool of
quantifiers to choose from, and (2) one more degree of freedom in the elimination
strategy (for example: prefer a quantifier with minimal/maximal depth in the quanti-
fier tree, or focus on one single branch). For exampliie, not eligible for expansion
according to (1), while it is eliminated working bottom-up in the tree of Figure 1.

4.3 Skolemization-based solvers.

The Skolem theorem [24] shows how to transform any giviest Order Logic(FOL)
statemenf’ into askolemizedormula Sk (F) that has two properties: (9k(F') con-

tains no existential quantifier, and (8} (F) is satisfiable iffF" is satisfiable (see [12]

for details). Existential quantifiers are eliminated by replacing the variables they bind
with Skolem functionwhose definition domains are appositely chosen to preserve sat-
isfiability. Several ways exist to construct such domains, depending on the form of
skolemization we employ (inner, outer, strong, optimized, etc.).

We focus onouter skolemization [20], in which the function introduced fere
varz(F') depends on all the universal variables that haivetheir scope, i.e. (for prenex
formulas) all the universal variables to the lefteoin the prefix. While FOL isclosed
w.r.t. skolemization (skolemizing a FOL formula yields a FOL formula), QBF is not.
However, skolemization can still be leveraged in the QBF framework [3]. For example,
by outer skolemizing the QBF instance (1) we obtain

(aV-s(a,b)) A (-aVbVs/(a,b,d,e)) A (=bV-sf(a,b,d,e)) A
A (avsh(a,b,d,e)) A (s¢(a,b)Vev—sh(a,b,d,e)) A 4)
A (s°(a,b)V—-dVsi(a,b,d,e)) N (aVst(a,b)V-sI(a,b,d,e))

wheres? is the function with arityy(«) introduced to skolemize, and all the variables

are meant to be universally quantified. Hence, skolemization-based solvers replace the
original QBF satisfiability problem with the satisfiability problem on the skolemized
instance. Once (4) is obtained from (1), methods fiot automated theorem proving

or ad-hoc strategies such as the ones presented in [1,3] can be employed.

How quantifier trees help skolemization-based solversQuantifier trees allows us

to reduce the arity of the skolem functions. Certain dependencies are indeed artificially
forced by the linear shape of the prefix. Given thlaf(¢t) = F for t € trees(F), we

work onSk(gbf(t)) rather than orbk(F'). For example, we obtain for the instance (1):

(av=sc(a)) A (maVvbVvs!(a,b)) A (=bV=sf(a,b)) A
A (avsh(a,e)) A (s¢(a)Vev-sh(a,e)) A (5)
A (s¢(a)V-dVsi(a,d)) N (aVs®(a)V-sI(a,d))

Simpler skolem functions help the solver in a way that depends on the approach to
evaluation it takes. For example, in the casesldizzo [2], each skolemized clause

C with m universal variables is translated into (the symbolic representatic2f of}
propositional clauses, with= 6(C) for prenex formulas, and = 6, (C) < §(C) for a
quantifier tree. This produce a linear shrinking of the symbolic representation, and up
to an exponential advantage over linear prefixes when ground reasoning is attempted.

5 Experimental results

We may think of a prenex QBF as a tree-like instance with one single branch, having
a depth equal to the number of variables in the instance. In the worst case, such struc-
ture stays untouched after tree reconstruction. But, we hope to obtain non-collapsed
structures, with more than one branch, and a maximal depth smaller than the number
of variables in the instance. Consequently, we also expect that both the average and
the maximal universal depth of existential variables decreases. According to Section 4,
these effects would map onto advantages for a variety of solving procedures. Does tree
reconstruction actually re-shape real-world instances? And is the time taken to grow
such a tree worth its benefits? We refer to the QBFLIB’s archive [14] (maintained by
the STAR-lab group at the University of Genova), which is a growing set of benchmarks
currently comprised of more than 4000 instances. Table 2 gives a first answer on some
families of instances. It compares the depth, average universal depth, maximal universal
depth, and number of branches computed over the linear prefix, against the same values
computed on the reconstructed syntactic tree. The time taken to build the tree is also
reported. On these instances, the impact of our reconstruction algorithm is strong, and
in some cases even surprisingly strong (see for example the instance-independent depth
of the reconstructed instances in the& family).

€2 e4 eb e8

el SN L\,
AN
Ji=t

al3

y

el
I/
L I
{ 1,-22

e5
5,20 I 7,21

3,-19
2,-1,22 4,-3,19 6,-5,20 8,-7.21
e9 el0 ell el2
-2,-22 -4,-19 -6,-20 -8,-21
/ \ 22 / \ -19 / \ 20 / { 21
-9 -10 -11 -12
el8 el5 el6 el7
-2,-9 -4,-10 -6,-11 -8,-12
29,-18 4,10,-15 6,11,-16 8,12,-17
-9,18 -10,15 -11,16 -12,17
-13,-14,-18 -13,-14,-15 -13,-14,-16 -13,-14,17
13,14,18 13,14,-15 13,14,-16 13,14,-17
13,-14,-18 13,-14,15 13,-14,-16 13,-14,-17
-13,14,-18 -13,14,-15 -13,14,16 -13,14,-17

Fig. 4. The reconstructed tree for the instanteailet-g-04-01

Before reconstruction Time After reconstruction
Instance [Depth Max&Avgv-depth Br] (MS)[Depth Max &Avgv-depth _Branche}

adder-12-sat | 2,665 942 8048 I 10| 227 80 43.1 24
adder-1Z2-unsaf] 2,687 486 2779 1 10| 2189 354 2428 1
adder-14-sat | 3,641 1,281 1,093.5 20 | 267 94 50.2 28
adder-14-unsaf 3,667 665 381.1 1 20| 2,988 483 331.8 1
adder-16-sat | 4,769 1,672 1,426.4 30 | 307 108 57.4 32
adder-16-unsai| 4,799 872 500.6 1 30| 3,911 632 434.6 1
Adder2-10-c | 7,970 445 4178 1 40| 670 300 287.8 2500

1

1

]

]

TN

]
]

TEEN

Adder2-10-s | 7,970 545 5248 40 98 56 295 2500
AdderZ-12-c 11,580 642 603.0 60 | 957 432 4145 3624
Adder2-12-s | 11,580 786 756.9 50 | 116 68 35.3 3624
Adder2-14-c | 15,862 875 822.0 70 | 1,296 588 564.2 4954
Adder2-14-s 15,862 1,071 1,031.5 170 | 134 80 41.2 4956

OTO Oy WO

flipflop-6-c 6864 30 29.9 1 30 560 18 17.6 2,364
flipflop-7-Cc 15,213 35 35.0 1 50| 1,330 21 20.7 5,121
flipflop-8-c 30,427 40 40.0 1 120| 2,824 24 23.8 10,04
flipflop-9-c 56,175 45 45.0 1 220| 5,466 27 26.9 18,24
flipflop-10-c | 97,272 50 50.0 1 410 9,820 30 29.9 31,18
flipflop-11-c 159,837 55 55.0 1720| 16,610 33 32.9 50,70
k-branch-n-20 | 13,822 127 97.9 1150 5568 127 64.3 2646
k-branch-p-19 12,544 121 93.2 1 130| 5063 121 61.3 2400
k-d4-n-16 1,438 69 51.7 1 10 755 69 35.3 310
k-d4-p-19 1,176 62 45.9 1 10 638 62 31.6 250
k-dum-n-18 885 44 32.2 1 5 495 44 22.4 198
k-dum-p-20 854 41 30.5 1 5 469 41 21.4 190
k-grz-n-18 792 24 17.4 1| 10 393 24 11.2 175
k-grz-p-19 767 24 17.7 1| 10 379 24 11.5 169
k-in-n-19 4,103 18 11.8 1 80 | 2248 18 8.2 859
k-Tin-p-18 932 12 9.9 1| 10 430 12 8.4 189
k-path-n-13 937 43 32.1 1/ 10 450 43 22.9 138
k-path-p-20 1358 61 45.3 1 10 645 61 32.0 199
k-ph-n-21 11,131 12 9.7 1 450| 5347 12 6.5 1,643
k-ph-p-20 10,444 12 9.7 1 460| 5067 12 6.4 1,524
k-poly-n-18 1,465 110 84.0 1 10 926 110 69.1 323
k-poly-p-17 1,384 104 79.4 1 10 875 104 65.4 305
k-t4p-n-19 2,725 123 90.9 1 20 | 1446 122 61.4 620
k-t4p-p-19 1,470 69 50.6 1 10 782 68 345 333
toilet-a-06-01.11 227 6 3.9 1 <1 84 6 1.8 27
foilet-a-06-01.12 247 6 3.9 1| <1 92 6 1.8 27
foilet-c-10-05.10 805 4 1.2 1| 10 498 4 0.5 55
toilet-c-10-05.12 965 4 1.2 1| 20 610 4 0.5 55
toilet-g-15-01.2| 80 4 3.2 1| <1 7 4 1.3 30
toilet-g-20-01.2| 106 5 4.0 1| <1 8 5 1.7 40
TOILET7.1.iv.13 400 3 2.2 1] 10 216 3 15 32
TOILET7.1Tav.14 431 3 2.2 1| 10 234 3 1.5 32
TOILETIO.T.iv.20 855 4 3.0 1| 10 457 4 2.0 44
TOILET16.1.iv.32 2,133 4 3.0 1 30 | 1,117 4 2.0 68
tree-exal0-10| 21 10 10.0 1] <1 4 2 2.0 9
free-exal0-15| 31 15 15.0 1 <1 4 2 2.0 14
tree-exal0-20 41 20 20.0 1] <1 4 2 2.0 19
tree-exal0-25 51 25 25.0 1] <1 4 2 2.0 24
tree-exal0-30 61 30 30.0 1] <1 4 2 2.0 29

Table 2. The effect of tree-reconstruction over the structure of the syntactic tree

Solving timg(s) Solving timg(s)

Instance Personality Linear prefix qTree Instance |Personality Linear prefix qTree
tree-exal0-10 B 7.7 0.1 k-dup-p-16| QBGS | tmeout 75.5
tree-exal0-20 B timeout 0.2 k-dup-p-17| QBGS| timeout 327.Q
tree-exal0-30 B timeout 0.3 adder-2-sai B timeout 0.3
TOILET2.1.iv.3| BG 0.3 0.2 adder-2-sat BG timeout 0.9
TOILET6.1.iv.11 BG 4.0 3.4 adder-4-saf B timeout 3.0
TOILET7.1.iv.13 BG 26.4 53 adder-4-sai BG timeout 26.8

k-dup-p-8 QBGS 50.4 0.2 adder-6-sat RS 13.9 10.7]

k-dup-p-11 | QBGS 54.5 9.7 adder-8-sat RS 57.1 37.4
k-dup-p-15 | QBGS| timeout 74.1 adder-10-sat RS 286.5 198.1

Table 3. Some instances solved on a 900MHz G3 with a 400s timeout.

Conversely, on some classes of instances (suahuwexor chain) the impact of
reconstruction is much weaker. The reader may experiment with the downloadable tool
gTree [2] which takes a QBF as input and produces statistics on the reconstructed tree.

An intuitive way to get the feeling of what reconstruction does is to take a look
at some tree extracted from real-world problewpfree indeed produces on request
a textual representation for such trees that can be rendered by suited programs (such
asdot/graphviz. Results are often surprising. Unfortunately, the trees of all non-trivial
instances are too big to be represented while keeping readable fonts for clauses and
variables. However, even the smallest instances retain interesting features. For example,
Figure 4 depicts the reconstructed tree for one of the smabéet" instances. In Fig-
ure 5 we give up the requirement on readable fonts and just get the overall picture: the
top-most part of a much bigger tree is depicted fofl@flop” instance.

Advantages coming at solving time from quantifier trees cannot be assessed in gen-
eral, as they heavily depend on the solving strategy and on the specific implement-
ation. We here considesKizzo [2,3,1], a skolemization-based, hybrid QBF solver
(incorporating tree-reconstruction) that can be configured to exercise the following
strategiek symbolic BDD-based incomplete reasoning (abbreviated in “S”), symbolic
resolution-based solving (“R”), branching reasoning with backjumping and learning
(“B"), SAT-based solution of ground sub-problems (“G”), and g-resolution reasoning
(“Q"). The preliminary results in Table 3 concern different reasoning styles, and show
that advantages are expected to cover a broad family of QBF solvers.

! Different strategies can m®mbinedogether to obtain solving “personalities”. Their combin-
ation is neither sequential nor parallel: They are fully integrated within one another [1].

AN N AN AN A A A A
V0 1 A A A A A A

SN TTTTTTTTT

TTTTTTTTITTIONS
Iyl lbhddbbddbbbddbbddbbbdddd

/"/_ i} [
T
=5~ 1144
- AN e—— ceoe NPV
- Sy b Lo L /‘\\n“%_:. /: :
AS) | /N
T S, 11 /‘ﬁ%ﬁ SICTILT A b
LA TRES) e L1 e L) sl

Fig. 5. The compressed, top-most part of the reconstructed tree for the insthpfieg-5-¢'

6 Conclusions

We presented a method—called quantifier tree reconstruction—that allows to recover
ex-posta portion of the internal structure of QBF instances which was hidden as a con-
sequence of the cast to prenex normal form. Means to profit from this reconstruction
have been presented, together with experimental results on public-domain instances. As
a side effect of our work, we have been ableigualizethe surprisingly articulated in-

ternal shape of certain instances. For example, all the instancesaddee satfamily

(Ayari's benchamarks in QBFLIB), though regarded as a very challenging ones, mater-
ialized in adisconnectabléorm. Future work on this topic relates to what makes some
instances much more sensible to tree reconstruction than others, and to the generaliza-
tion of our algorithm towards trees with depth minimality properties.

Acknowledgments. We thank Lucas Bordeaux for pointing out connections to query
optimization, and Luciano Serafini for hints on previous versions of this paper.

References

1. M. Benedetti. sKizzo: a QBF Decision Procedure based on Propositional Skolemization and Symbolic Reasoning,
Tech.Rep. 04-11-03, ITC-irst, 2004.
2. M. Benedetti.sKizzo 's web site sra.itc.it/people/benedetti/sKizzo , 2004.
. M. Benedetti. Evaluating QBFs via Symbolic SkolemizationPhoc. of the 11th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR®)mber 3452 in LNCS. Springer, 2005.

. A. Biere. Resolve and Expand. Rroc. of SAT'04pages 238-246, 2004.

. H. K. Biining and T. LettmannPropositional Logic: Deduction and Algorithm&€ambridge University Press, 1999.

. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified boolean formul&odeedings of

the fifteenth national/tenth conference on Atrtificial intelligence/Innovative applications of artificial intelligeages

262-267. American Association for Artificial Intelligence, 1998.

7. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem prodngnal of the ACM5:394-397,
1962.

8. U. Egly. On the Value of Antiprenexing. In F. Pfennig, editoogic Programming and Automated Reasoning, Proc. of
the 5th International Conference, LPAR9#ages 69-83. Springer, Berlin, Heidelberg, 1994.

9. U. Egly, H. Tompits, and S. Woltran. On Quantifier Shifting for Quantified Boolean FormulaRrolreedings of the
SAT-02 Workshop on Theory and Applications of Quantified Boolean Formulas (QBpa@2s 48—61, 2002.

10. R. Elmasri and S. B. Navath€undamentals of Database SysterAddison-Wesley, 2003.

11. R. Feldmann, B. Monien, and S. Schamberger. A Distributed Algorithm to Evaluate Quantified Boolean Formulas. In
Proceedings of the AAAI National Conference on Atrtificial Intelligepeges 285-290, 2000.

12. M. Fitting. First-Order Logic and Automated Theorem Provir&pringer Verlag, 1996.

13. M. GhasemZadeh, V. Klotz, and C. Meinel. ZQSAT: A QSAT Solver based on Zero-suppressed Binary Decision Dia-
grams, available atww.informatik.uni-trier.de/Tl/bdd-research/zgsat/zgsat.html , 2004.

14. E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A system for deciding Quantified Boolean Formulas Satisfiab-
ility. In Proc. of the International Joint Conference on Automated Reasoning (IJCAR,201).

15. E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE++: an Efficient QBF SolvePrdg. of the 5th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCARDO04.

16. E. Giunchiglia and R. Sebastiani. Applying the Davis-Putnam Procedure to Non-clausal Formélex. lof the 6th
Congress of the Italian Association for Artificial Intelligence (Al*)Aumber 1792 in LNAI. Springer, 1999.

17. H.Hoos and T. Stitzle. Satlib - the satisfiability library. http://www.informatik.tu-darmstadt.de/Al/SATLIB, 1998.

18. H. Kleine-Buning, M. Karpinski, and A. Flogel. Resolution for quantified Boolean formul@®rmation and Com-
putation 117(1):12—18, 1995.

19. R. Letz. Advances in Decision Procedures for Quantified Boolean Formul&sot¢eedings of the First International
Workshop on Quantified Boolean Formulae (QBF,Qdages 55-64, 2001.

20. A.Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In Alan Robinson and Andrei Voronkov,
editors,Handbook of Automated Reasonihapter 6, pages 335 — 367. Elsevier, Amsterdam, Netherlands, 2001.

21. R. Ostrowski, E. Grégoire, and S. Lakhdar. Recovering and Exploiting Structural Knowledge from CNF Formulas. In
Principles and Practice of Constraint Programmingumber 2470 in LNCS. Springer, 2003.

22. G.Panand M.Y. Vardi. Symbolic Decision Procedures for QBRPrceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CP&)04.

23. A. Sabharwal, P. Beame, and H. A. Kautz. Using Problem Structure for Efficient Clause Learnirgclof SAT03
number 2919 in LNCS, pages 242-256. Springer, 2003.

24. T. Skolem. Logico-combinatorial investigations in the satisfiability or provability of mathematical propositions: a
simplified proof of a theorem by L. Léwenheim and generalizations of the theoreFnorim Frege to Godel. A Source
Book in Mathematical Logic, 1879-1933ages 252—263. Harvard University Press, Cambridge, 1967 (1920).

25. L. J. Stockmeyer. The Polynomial-Time Hierarchyheorical Computer Scieng€):1-22, 1977.

26. C. Thiffault, F. Bacchus, and T. Walsh. Solving Non-clausal Formulas with DPLL searéoén of SAT042004.

27. L. Zhang and S. Malik. Towards Symmetric Treatment of Conflicts And Satisfaction in Quantified Boolean Satisfiab-
ility Solver. InProc. of CP’02 2002.

w

[©Né IF-N

