
Evaluating QBFs via Symbolic Skolemization

Marco Benedetti§

Istituto per la Ricerca Scientifica e Tecnologica (IRST)
Via Sommarive 18, 38055 Povo, Trento, Italy

benedetti@itc.it

Abstract. We describe a novel decision procedure for Quantified Boolean For-
mulas (QBFs) which aims to unleash the hidden potential of quantified reasoning
in applications. The Skolem theorem acts like a glue holding several ingredients
together: BDD-based representations for boolean functions, search-based QBF
decision procedure, and compilation-to-SAT techniques, among the others. To
leverage all these techniques at once we show how to evaluate QBFs by sym-
bolically reasoning on a compact representation for the propositional expansion
of the skolemized problem. We also report about a first implementation of the
procedure, which yields very interesting experimental results.

1 Introduction

Unquestionably, the most effective tools for solving a large class of industrial-scale
problems (such as computer-aided design of integrated circuits [19], Planning [17],
Model Checking for dynamic systems [5], Scheduling, Operations Research, and Cryp-
tography, to name a few) are SAT solvers, which are search-based reasoning engines
designed to decide the existence of models for propositional instances (PROP).

One step ahead of PROP, we encounter the more expressive language of quantified
boolean formulas (QBFs), which adds the valuable possibility to quantify (universally
or existentially) over the truth value of variables. Many of the problems mentioned
above feature a far more handily QBF formulation, which is also (possibly) exponen-
tially more succinct than the propositional one. For sure, by sticking to PROP we avoid
worsening the decision complexity from NP to PSPACE. But, we also loose the expres-
sive power of quantification, which not only provide a natural way to state relevant facts
or rules, but could also be exploited during the solving process. At least in principle.

What really matters to applications is the capability of a reasoning engine to solve
those problems that arise in practice. Hence, we ask: Is the balance between the above
pros and cons favorable to QBF? Do quantified decision procedures add substantial
value to the reasoning capabilities of purely propositional SAT solvers? The answer
is: not yet. QBF is a promising formalism, but substantial improvements in decision
procedures are expected before its potential can be unleashed to applications [1, 21, 4].

The observations above motivates this paper, in which we describe a new solving
paradigm that captures the added value of quantified reasoning. A twofold novelty is
introduced. On the one hand, we reinterpret the Skolem theorem to reassess quanti-
fied reasoning as a quantifier-free, propositional reasoning over a purposely designed

§ This work was supported by PAT (Provincia Autonoma di Trento, Italy), grant n. 3248/2003.

symbolic representation. We show how this allows to mix (1) the inference power of
quantified reasoning, (2) the strength of many well known SAT techniques, and (3) the
classical search-based decision procedures for QBF. On the other hand, several power-
ful techniques for automated reasoning are arranged within a coherent framework in a
way that is advantageous and instrumental in realizing the just mentioned approach.

The essential component of our construction traces back to the Twenties (the Skolem
theorem [31]). Following the timeline, we capitalize on the seminal contributions to
propositional theorem proving from the Sixties (DPLL algorithms [9, 10]). Then, a
compact formalism from the Eighties to reason on boolean functions [6] is employed.
Effective quantified reasoning comes from the Nineties [7, 18]. In the same years, tech-
niques to translate real-world problems into SAT arised [17, 19, 5] which are adapted to
our case. Finally, symbolic representations for propositional problems gained attention
in the last few years [8, 25, 28], and are largely useful here. These techniques are ex-
ercised together thank to a symbolic representation for the propositional expansion of
skolemized QBF instances, also resorting to SAT-based reasoning when it pays back.

In the rest of this paper we introduce some preliminaries (Section 2), present sym-
bolic skolemization (Section 3), discuss symbolic reasoning strategies (Section 4), an-
alyze experimental results (Section 5), and give our concluding remarks (Section 6).

2 Preliminaries
We consider quantified boolean formulas inprenex conjunctive normal form1, such as

f = ∀a∃b∀c∃d. (¬a ∨ c ∨ d) ∧ (¬b ∨ ¬d) ∧ (a ∨ b ∨ ¬d) ∧ (¬a ∨ b) (1)

where “∀a∃b∀c∃d” is calledprefixand is followed by a conjunctive normal form (CNF)
matrix, i.e. a propositional formula made up by conjuncting clauses, each clause being
a disjunction of literals (a variable or a negated variable). More in general, we consider
formulasQ1V1Q2V2 . . .QnVn.M whereQi ∈ {∀,∃},Qi 6= Qi+1, and the matrixM
has variablesvar(M) = ∪ni=1Vi (Vi ∩ Vj = ∅ for i 6= j). Variablesv ∈ Vi are said
to be existentially (universally) quantified ifQi = ∃ (Qi = ∀). The set of existentially
(universally) quantified variables in a QBFf is denoted byvar∃(f) (var∀(f)). The uni-
versal depthδ(v) of an existential variablev ∈ Vi is the number of universal variables
dominatingv: δ(v) =

∑
Qj=∀,j<i |Vj |. For clauses, it isδ(Γ) = maxv∈var∃(Γ)δ(v).

We use lowercase (uppercase) roman letters for propositional variables (clauses),
and greek letters for values in the boolean spaceB = {0, 1} and vectors inBn. For
example:Ψ = 〈ψ1, . . . , ψn〉 ∈ I ⊆ Bn. The complement ofI ⊆ Bn is denoted byI.

Double negation on literals is disallowed:¬¬l is rewritten asl. We use exclusive-or
to build literals out of variables:ϕ⊗v meansv whenϕ = 0, and¬v whenϕ = 1. Given
a literal l = ϕ ⊗ v, we posevar(l) = v. An assignmentis a consistent set of literals
(i.e. a setS such that@l ∈ S| ¬l ∈ S). We denote byC ∗ l the result of applying the
assignment{l} to the clauseC. C is unchanged ifvar(l) 6∈ var(C), is subsumedif
l ∈ C, andresolvesto C \ {¬l} if ¬l ∈ C. This notion is extended to sets of clauses
and literals:f ∗A is the formula resulting from applyingA to each clause inf .

Finally, forall reductionis a model preserving transformation for QBFs that consists
in removing from each clauseC all the universal literalsπ⊗v ∈ C with v ∈ Vi such
thatvar∃(C) ∩ Vj = ∅ for everyj > i. We always consider forall-reduced formulas.

1 This choice causes no loss of generality and is shared by all the available encodings of real-
world problems [15]. However, it might be responsible for an increase in proof complexity.

2

3 Symbolic Propositional Skolemization for QBFs

We leverage the Skolem theorem to map anyQBF instance onto a satisfiability equiv-
alent SAT instance featuring a very compact symbolic representation. We interleave the
development of the general method with the presentation of a running example.

3.1 Propositional Skolemization

The Skolem theorem [31] shows how to transform any givenFirst Order Logic(FOL)
statementf into askolemizedformulaSk(f) that has two properties: (1)Sk(f) con-
tains no existential quantifier, and (2)Sk(f) is satisfiable ifff is satisfiable (see [12] for
a survey). Existential quantifiers are eliminated by replacing the variables they bind with
Skolem functionswhose definition domains are appositely chosen to preserve satisfia-
bility. We empoly anouterform of skolemization [26], in which the function introduced
for e ∈ var∃(f) depends on all the universal variables that havee in their scope (for
prenex formulas: all the universal variables to the left ofe in the prefix).

Functions have no direct representation inPROP , but their definability can be
captured at the expense of a possibly exponential blowup in the size of the instance.

We adopt a three-steppropositional skolemizationfor aQBF instancef .

1. Translation off into a satisfiability equivalentFOL instanceFOL(f).
2. Application of the Skolem theorem toFOL(f) to obtain a (satisfiability preserv-

ing) FOL instanceSk(FOL(f)) with no existential quantifier.
3. Translation ofSk(FOL(f)) into an equivalent SAT instanceProp(Sk(FOL(f))).

The first step is a slight rephrase of the problem, but it allows us to plainly capture the
intuition behind propositional skolemization. Skolem funtions leverage the existence
of two semantics levels inFOL, namely the level ofpredicatesand the level ofterms.
Skolem functions are terms that are substituted for other terms (the existential variables)
as arguments of predicates.QBF andPROP lack the formal mechanisms necessary
to cope with those two levels. They just feature the predicate level, though this is ob-
fuscated by their variable-oriented syntax. To uncover such level, we introduce aFOL
unary predicatep defined over the boolean spaceB, and interpreted asp(1) = TRUE,
p(0) = FALSE, and restrict the domain of interpretation of every variable to be the
boolean space as well. This immediately allows us to rewrite everyQBF as a satis-
fiability equivalentFOL formula. For example, by rewriting the QBF (1) we obtain

f ′ = FOL(f) = ∀a∃b∀c∃d. (¬p(a) ∨ p(c) ∨ p(d)) ∧ (¬p(b) ∨ ¬p(d))
∧(p(a) ∨ p(b) ∨ ¬p(d)) ∧ (¬p(a) ∨ p(b))

In the second step we eliminate existential quantifiers by substituting to each existential
variablev a Skolem functionsv depending on the proper subset of dominating universal
quantifiers. We obtain a satisfiability-equivalent purely universal formula.

Sk(f ′) = ∀a∀c. (¬p(a) ∨ p(c) ∨ p(sd(a, c))) ∧ (¬p(sb(a)) ∨ ¬p(sd(a, c)))

∧(p(a) ∨ p(sb(a)) ∨ ¬p(sd(a, c))) ∧ (¬p(a) ∨ p(sb(a)))
(2)

From aFOL point of view, existential quantifiers are simply disappeared. The dute we
pay for this simplification is the loss of logical equivalence. From a higher-level point
of view, we can predicate over the interpretation of terms and explicitly state what the
Skolem theorem implicitly says when it reduces the satisfiability ofFOL(f) to the

3

satisfiability ofSk(FOL(f)), i.e. that eachinner existentialFOL quantification over
v has been substituted by anouterhigher-order existential quantification oversv (over
the existence of a proper interpretation for the Skolem terms). Informally:

∀a∃b∀c∃d. f(a, b, c, d)
SAT⇐⇒ [∃sb∃sd]∀a∀c. f(a, sb(a), c, sd(a, c))

In the third step (translation toPROP), the actual work is done. It amounts toflat-
ten the two semantics levels introduced above onto one single propositional level. This
transformation is made easy by the constructive property that for every formulaSk(FOL(f))
with f ∈ QBF both the predicate-level and the term-level interpretations map boolean
spaces onto boolean values. We join their definition spaces and interpretation functions,
and give an inductive translation procedure fromSk(FOL(f)) to PROP .

The only non-trivial piece of work consists of building a CNF propositional repre-
sentation for every (possibly negated) Skolem term. As a constructive consequence of
steps 1-2, every Skolem functions(a1, a2, . . . , an) we manage is a relation overBn+1

that mapsBn ontoB. Each one is completely specified by2n boolean parameters giv-
ing the truth value of the function on each point of its domain, so22n

different Skolem
n-ary functions exist. Let us denote bysΨ the boolean parameter that represents the
truth value of a booleann-ary functions evaluated inΨ = 〈ψi, ψ2, . . . , ψn〉 ∈ Bn. We
directly obtain a CNF propositional version fors(a1, a2, . . . , an) as follows:

Prop(ϕ⊗s(a1, . . . , an))
.
=

^
Ψ∈Bn

(ϕ⊗sΨ) ∨ ¬(ψ1⊗a1) ∨ ¬(ψ2⊗a2) ∨ · · · ∨ ¬(ψn⊗an)

For example, the Skolem terms¬sb(a) andsd(a, c) are translated asProp(¬sb(a)) =
(¬sb0∨a)∧(¬sb1∨¬a), andProp(sd(a, c)) = (sd11∨¬a∨¬c)∧(sd10∨¬a∨c)∧(sd01∨
a∨¬c)∧ (sd00 ∨ a∨ c). So,Prop(sd(a, c)) may be seen as a function mapping a point
〈α, γ〉 ∈ B2 onto the proper valuesdαγ = sd(α, γ), and the same forProp(¬sb(a)).

The next step extends the translation from terms to predicates. Let us first consider
a clause containing only one existentially quantified variablee with polarityϕ:

∀u1∀u2 · · · ∀un∃e. (π1⊗ui1) ∨ (π2⊗ui2) ∨ · · · ∨ (πr⊗uir) ∨ (ϕ⊗e)

whereu1, u2, . . . , un are all the universal variables dominatinge, while a subsetui1 , ui2 ,
. . . , uir , r ≤ n of such variables appears in the clause with polaritiesπ1, π2, . . . , πr.
By substituting fore the expansionProp(ϕ⊗ s(u1, . . . , un)) of the Skolem function
s : Bn → B defined by the2n parameters{s0...00, s0...01, · · · , s1...11}, we obtain:

∃s0...00∃s0...01 · · · ∃s1...11

∀u1∀u2 · · · ∀un

(π1⊗ui1) ∨ (π2⊗ui2) ∨ · · · ∨ (πr⊗uir)∨
∨

`V
Ψ∈Bn(ϕ⊗sΨ) ∨ ¬(ψ1⊗u1) ∨ · · · ∨ ¬(ψn⊗un)

´
As a consequence of the semantics flattening we have performed, the “meta” existential
quantifier over ann-ary Skolem function has been transformed into a set of2n outer
existential quantifiers. In the worst case, we have to distribute the disjunction over all
the clauses in the last term, thus obtaining2n clauses. Fortunately, some (many) of
those clauses are trivially satisfied by complementary literals. In particular, whenever
ψij = πj for at least onej ∈ {1, . . . , r}, the clause is satisfied, so that we get only
2n−r = 2δ(e)−r clauses. Moreover, skolemized clauses no longer contain existential

4

variables dominated by universal variables, hence all the universal literals areforall
reducible. As a result of these two properties, we obtain the set of unit clauses:

∃s0...00∃s0...01 · · · ∃s1...11.
^

Ψ∈I

ϕ⊗sΨ , where I = {Ψ ∈ Bn|∀j.ψij 6= πj}

In the general case we have clauses containingm existential variables{e1, e2, . . . , em}
with δ(e1) ≤ δ(e2) ≤ . . . ≤ δ(em) and polaritiesϕ1, . . . , ϕm, where eachei is domi-
nated by a set∪ij=0Uj of universal variables. Each clause also contains a possibly empty
subset of universal literals{πk⊗uk, k = ij−1 + 1, . . . , ij} ⊆ Uj for eachj = 1, . . . ,m,
with i0 = 0. The general shape for the clause is

∀U1∃e1 · · · ∀Um∃em. (π1⊗ui1) ∨ · · · ∨ (πj1⊗uij1
) ∨ (ϕ1⊗e1) ∨

(πj1+1⊗uij1+1) ∨ · · · ∨ (πj2⊗uij2
) ∨ (ϕ2⊗e2) ∨

...
(πjm−1+1⊗uijm−1+1) ∨ · · · ∨ (πjm⊗uijm

) ∨ (ϕm⊗em)

(3)

By (a) propositionally skolemizing all the existential variables in such clause, and (b)
applying forall reduction to all the variables in∪mj=0Uj , we obtain:

∃S1 · · · ∃Sm.
^

Ψ ∈ Bδm

∀j.ψij
6= πj

(ϕ1⊗s(1)Ψ |δ1
) ∨ (ϕ2⊗s(2)Ψ |δ2

) ∨ · · · ∨ (ϕm⊗s(m)

Ψ |δm
) (4)

whereΨ |k denotes thek-bit long prefix ofΨ , δi = δ(ei), the boolean parameters(i)Ψ ′
represents the truth value overΨ ′ = Ψ |δi

∈ Bδi of the Skolem functions(i) introduced
for ei, andSi = {s(i)Ψ |Ψ ∈ Bδi}. The abstraction operator “|” generalizes to sets as
I|k

.= {〈ψ1 . . . , ψk〉|∃〈ψ1, . . . , ψk, . . . , ψn〉 ∈ I} with I ⊆ Bn andk ≤ n.
We denote byPropSk(·) the function that applied to a genericQBF clause rep-

resented by Expression (3) yields the result of our three-step translation, i.e. the set of
clauses represented by Expression (4). The cardinality of this clause set is2δ(em)−jm .

To translate an entire formula, we observe that Skolem terms are introduced once
per variable. So, the propositional skolemization of any formula is obtained by join-
ing together the skolem clauses obtained out of eachQBF clause, always re-using
the same parameters on the same existential variable. The overall procedure defines
a satisfiability-preserving mappingPropSk : QBF −→ PROP between the orig-
inal QBF space and a purely propositional space. For a QBFf with var∃(f) =
{e1, . . . , em}, thePROP instance is defined over the set of fresh variables{s(i)Ψ , i =
1, . . . ,m, Ψ ∈ Bδ(ei)}.

As an example, by propositionally skolemizing (1) we obtain

∃sb0∃sb1∃sd00∃sd01∃sd10∃sd11. (sd01) ∧ (¬sb0∨¬sd00) ∧ (¬sb0∨¬sd01) ∧ (¬sb1∨¬sd10)
∧(¬sb1∨¬sd11) ∧ (sb1∨¬sd10) ∧ (sb1∨¬sd11) ∧ (sb0)

(5)

If (and only if) we find a model for (5) we are entitled to conclude that (2) is satisfiable,
so that (1) evaluates toTRUE. Not only we are ensured that a proper interpretation for
the Skolem functionssb andsd do exist to satisfy the formula, but we have explicitily
computedsuch an interpretation. Every model for (5) gives us the desired truth value of
acceptable skolem functions over each point of their domains.

5

3.2 Symbolic Representation

The term “symbolic representation” has a broad AI-related sense, but it has been used
with a much more specific meaning in the realm of model checking (MC). According
to MC’s usage of the word, a symbolic representation is one that allows to shift from
explicit MC techniques—where each state of a system to be checked is individually
represented and manipulated—tosymbolicMC approaches—where data structures are
employed that allow to compactly and implicitly represent (possibly huge) sets of states,
and also to reason about them as a whole. We adopt MC’s viewpoint here, as we are
interested in symbolically representing and manipulating sets of clauses.

This interest originates in the observation thatPropSk(f) may be exponentially
larger thanf . Without some powerful tool for compactely representing and managing
propositional skolemizations, not only it may be unfeasible to solve the resulting SAT
instances, but they might not even fit into the memory of any real machine.

Related approaches exist in the literature (see Section 6), but we have to manage
a very special case here, and we want to profit from its structure. In particular, we are
only interested in representing clause-sets coming from propositional skolemization of
QBF formulas, with a representation that is closed under the operations we define in
the next section. Our representation employes one singlesymbolic clauseto compactly
represent the whole clause set described by the Expression (4) w.r.t. the QBF clauseC
described in Expression (3). We need to memorize three pieces of information:

1. The listΓ = [ϕ1⊗e1, . . . , ϕm⊗em] of existential literals in the originating clause.
2. The set of indexesI = {Ψ ∈ Bδ(em) | ∀j.ψij 6= πj}.
3. The list[δ(e1), . . . , δ(em)] of the universal depths of each existential literal.

The information in Item 3 is not related to a single clause. Rather, it is an attribute of
the formula as a whole that only depends on the prefix, and that needs to be represented
once per formula. By contrast, the couple〈Γ, I〉 actually defines a symbolic clause
Symb(C) which we compactly denote by writingΓI . The Symb(·) transformation
is readily extended to QBF instances asSymb : QBF −→ PROPSYMB , where
PROPSYMB denotes the space of symbolic propositional instances. It is

Symb(∀U1∃e1 · · · ∀Um∃em.M)
.
= ∃[e1]δ1 · · · ∃[em]δm .

^
C∈M

Symb(C) (6)

where∃[e1]δ1 · · · ∃[em]δm
is asymbolic prefixmentioning asymbolic variable[ei]δi

for
each original existential variableei at universal depthδi = δ(ei).

For example, the symbolic representation of the QBF formula (1) is:

F = ∃[b]1∃[d]2. [d]{10} ∧ [¬b,¬d]{00,01,10,11} ∧ [b,¬d]{00,01} ∧ [b]{1} (7)

Each symbolic clause is made up ofsymbolic literals, that we represent as symbolic
unit clauses. For example, the clause[b,¬d]{00,01}, under the prefix∃[b]1∃[d]2, is made
up by the symbolic literals[b]{0} and [¬d]{00,01}. A symbolic literal[ϕ⊗e]I belongs
to a symbolic clauseΓJ , written [ϕ⊗e]I ∈ ΓJ , whenϕ⊗e ∈ Γ andI ⊆ J |δ(e).
As opposite to symbolic objects, the standard propositional elements are calledground
objects. For example, the ground literals¬d00 and¬d01 belong to the symbolic literal
[¬d]{00,01}, while the ground clausesb0∨¬d01 andb0∨¬d00 belongs to[b,¬d]{00,01}.

6

Symbolic formulas have both asymbolic sizeand aground size. The symbolic size
of F is the number of symbolic clauses (or literals) in the formula. The ground size
is the number of clauses (or literals) inProp(F). So, the symbolic size (number of
clauses) for a symbolic formulaF is |F|symb =

∑
ΓI∈F |Γ |, while its ground size is

|F|ground =
∑
ΓI∈F |I|. For example, the formula (7) has symbolic size equal to4

and ground size equal to8. The ground size is always greater than the symbolic size, as
each symbolic clause represents at least one ground clause.

Symbolic formulas exhibit three appealing properties: (1) they preserve the satisfi-
ability of the originating QBF instance, (2) they are compactly representable, and (3)
they can be efficiently manipulated to perform deductions. We here consider the first
two properties, and delay the discussion on the third one until the next section.

Semantics for symbolic formulas. We define an evaluation mechanism for symbolic
formulas based on the standard evaluation of their propositional expansion. According
to Expression (4), we can re-gain the ground meaning ofΓI = [ϕ1⊗e1, . . . , ϕm⊗em]I
under the relevant prefixP = ∃[e1]δ1 · · · ∃[em]δm

through a functionProp defined as

Prop(P, ΓI)
.
=

^
Ψ∈I

ϕ1⊗s(1)Ψ |δ1
∨ . . . ∨ ϕm⊗s(m)

Ψ |δm
(8)

This function is extended to a symbolic formulaF with matrixM and prefixP by
posingProp(F) .=

∧
ΓI∈M Prop(P, ΓI). In particular, a consistent set of symbolic

literals{[e1]I1 , . . . , [ek]Ik
} is a model forF = P.M = Symb(f), f ∈ QBF iff the

ground assignment∪j=1,...,kProp(P, [ej]Ij
) is a model forProp(Symb(f)). By con-

struction, it isProp(Symb(f)) = PropSk(f), hence the QBFf evaluates toTRUE
iff Symb(f) is satisfiable. For example, theProp function applied to (7) yields (5).

Compact representation.The (possible) exponential blowup in every symbolic clause
ΓI has been purposely confined to the cardinality ofI. We pursue compactness for
its symbolic representation, notwithstanding its ground size, by employing a second
layer of abstraction, consisting in the compact representation ofI by means ofreduced
ordered binary decision diagrams(BDDs) defined over the set of variablesvar∀(f).
[c,¬e]

b

0 1

d

0 1

b

a[e]

According to the semantics of BDDs, an entire setI = {Ψ ∈
Bδ(em) | ∀j.ψij 6= πj} is represented by a single linear-sized BDD
(in m) requiring one internal node for each universal variable in the
originating clause. The whole symbolic representation has a linear
size w.r.t. the number of literals in the originatingQBF clause. The
picture aside depicts our representation of the skolemized version of
∀a∀b∃c∀d∃e. (b∨c∨¬e)∧ (¬a∨¬b∨d∨e). As an additional source
of compactness, we notice that BDDs are semantically canonical rep-
resentations, so they shareat leastall the representations for QBF
clauses with the same universal literals. As we produce only one sym-
bolic clause out of eachQBF clause, the representation ofSymb(f)
enlarges at most linearly with|f |. However, thisonly holds for the ini-
tial representation. The symbolic size may increase as a consequence
of the symbolic inferences described in the next section.

7

4 Reasoning on Propositional Skolemizations

The evaluation of the original QBF instance has been restated as a satisfiability test on
the symbolically represented existential instanceSymb(f). The peculiar structure of
Symb(f) allows to attack the SAT problem from three different perspectives, each one
featuring specific strengths. We describe such methods in the subsequent three sections.
Far from being mutually exclusive, those three strategies can be used in a synergic way,
so that each one contributes at its best towards the common goal (see Section 4.3).

4.1 Ground reasoning

The original QBFf can be evaluated by explicitly constructingProp(Symb(f)) and
solving it via state-of-the-art SAT solvers (they are very efficient on QBF-derived in-
stances). We resort to this option only when the ground instance is affordable2, which
is not the case for many real-world problems. Yet, the reduced problems generated as
described in Section 4.2, 4.3 are eventually small enough to be solved this way.

Altought theorically straightforward, the computation ofProp(Symb(f)) deserves
a lot of attention on the practical side, due to the (possibly) large number of (possi-
bly) huge SAT instances generated out of each QBF formula. Groundization is made
up of two steps: (1) generation of theground spaceand (2) generation of the ground
clauses. The latter step is executed according to Expression (8). The former constructs
a mapping between thestructurednamespace of symbolic literals and aflat, SAT-solver
friendly namespace for ground literals. It amounts to associate a unique positive integer
to each ground variable that belongs to at least one clause in the current symbolic for-
mula (and to them only). To prevent the SAT solver from suffering unnecessarily large
data structures, the set of variable codes generated for the formula as a whole should be
composed of all and only the integers in the interval[1, n], for some sufficiently largen.
In essence, we need a partial, efficiently invertible functionVmap : D∃ ×D∀ → [1, n]
whereD∃ = var∃(f),D∀ = B|var∀(f)|, andn just suffices to allow bijection.

4.2 Symbolic reasoning

We define somesymbolic inference rulesover PROPSYMB to directly manipulate
Symb(f) while preserving the satisfiability ofProp(Symb(f)). As opposed to ground
reasoning, the emphasis is on designing symbolic versions of the standard inference
rules that work without expanding symbolic objects to ground objects. In essence, it is
a matter of defining how the basic steps (subsumption, resolution, assignment, substi-
tution) can be performed at a purely symbolic level on sets of ground clauses at once.

Complete refutation strategies—such as those based on SL, linear, or directional
resolution—could be employed in principle. However, efficient and easy-to-implement
forms of incomplete reasoning exist that capture many inferences relevant to QBF-
derived instances. Even if the rules adopted are not refutationally complete, the compu-
tation of their deductive closurenormalizesthe instance. So, a satisfiability-equivalent,
symbolic output formula with a (much) smaller ground size than the original one is
generated, and other complete methods can safely work on such simplified version.

2 By affordablewe mean that the instance can be decided without running out of memory. Af-
fordability thus depends on the SAT engine employed and on the available amount of memory.

8

The central step towards symbolic reasoning amounts to extend the star operator. For-
merly absent empty clause-setsΓ∅ may result, which are eliminated from the formula.

ΓI ∗ [l]J =

8<:
ΓI∩J whenl ∈ Γ
ΓI∩J ∧ Γ

′
(I∩J)|δ(Γ ′)

with Γ ′ = Γ \ {¬l},when¬l ∈ Γ
ΓI otherwise

(9)

The efficiency of symbolic reasoning thus stems from the structured nature of the rep-
resentation, which takes universal reasoning apart form existential reasoning. BDD op-
erations conveniently deal with the former, list-based representations with the latter.

We now exemplify four (incomplete) symbolic rules that are highly effective on
average and can be implemented rather efficiently. In particular, notice that it is easy to
symbolically extract both pure literals and unit clauses. Let us consider the formula

∃a∀b∃c∀de∃fgh∀i∃l. (¬c∨a) ∧ (¬a∨¬g) ∧ (¬e ∨ h) ∧ (c ∨ ¬e ∨ g∨¬h)
∧(¬b∨d∨¬f∨l) ∧ (¬e∨f∨g) ∧ (i∨¬c∨¬h∨d∨¬l) (10)

and its symbolic matrixM (under the prefix∃[a]0∃[c]1∃[f]3∃[g]3∃[h]3∃[l]4):

[¬c, a]{0,1} ∧ [¬a,¬g]{0,1}3 ∧ [h]{001,011,101,111} ∧ [c, g,¬h]{001,011,101,111}∧
[¬f, l]{1000,1001,1010,1011} ∧ [g, f]{001,011,101,111} ∧ [¬c,¬h,¬l]{0000,1000,0010,1010}

The simplest rule is thesymbolic unit clause propagation(SUCP). It builds on top
of the observation that each symbolic unit clause[γ]I in the formula represents a set
{γi|i ∈ I} of ground literals. All of them need to be assigned to avoid contradictions.
These assignments are performed all-at-once by the star operator. The only unit clause
in our symbolic formula is[h]{001,011,101,111}. By assigning this literal we obtain

[¬c, a]{0,1} ∧ [¬a,¬g]{0,1}3 ∧ [c, g]{001,011,101,111} ∧ [¬f, l]{1000,1001,1010,1011}
∧[g, f]{001,011,101,111} ∧ [¬c,¬l]{0000,1000} ∧ [¬c,¬h,¬l]{0010,1010}

The next rule we apply is thesymbolic pure literal elimination(SPLE). It does what
we would expect from the standard rule, but performs its job in a purely symbolic
manner, by (a) constructing a complete symbolic representation of the set of every
pure ground literal, and (b) applying the resulting symbolic literals to the formula. The
pure literals onv are[v]I+\(I+∩I−) and[¬v]I−\(I+∩I−), whereI+ = ∪[v]I∈MI and
I− = ∪[¬v]I∈MI. The pure literals in our example are[f]{001,011,111}, [¬f]{100},
[¬g]{000,010,100,110}, [¬h]{000,100}, [l]{1001,1011}, and[¬l]{0000,0010}, so we obtain

[¬c, a]{0,1} ∧ [¬a,¬g]{001,011,101,111} ∧ [c, g]{001,011,101,111}
∧[¬f, l]{1010} ∧ [g, f]{101} ∧ [¬c,¬l]{1010}

The next two rules only consider the subset ofbinary symbolic clauses, employing a
graph-based approach similar to the one used to simplify standard propositional in-
stances with many binary clauses [2]. We build asymbolic implication graph(SIG),
which has two nodes labeled by[a]δ(a) and [¬a]δ(a) for each existential variablea in

the original QBF, and a couple of arcs[¬a]δ(a)
I−→ [b]δ(b) and [¬b]δ(b)

I−→ [a]δ(a)
for each binary symbolic clause[a, b]I . So, unlike standard implication graphs, SIGs
feature labeled arcs. The arcs originating from[a, b]I are labeled byI. Each symbolic

arca
I−→ b represents a set of ground arcs{aΨ |δ(a)

−→ bΨ |δ(b)
, Ψ ∈ I} in the corre-

sponding ground graph. The two rules we apply are as follows.

9

1. Symbolic Hyper Binary Resolution(SHBR). It enumerates all the resolution chains
of symbolic binary clauses (via a depth-first, non-redundant traversal of the SIG),
looking for failed literals, i.e. for literals[a]I such that each¬aΨ ∈ [¬a]I can
be derived (via a finite number of resolution steps only involving binary clauses)
as a consequence of the hypothesisaΨ . Each ground literal in[a]I generates a
contradiction, so we force the opposite symbolic assignment, shifting our attention
ontoF ∗ [¬a]I . A literal [a]I is failed if we encounter the following (portion of a)

resolution path:[a] I1→ [a1]
I2→ [a2] · · ·

In→ ¬[a], with I = (∩j=1,...,nIj)|δ(a) 6= ∅.
2. Symbolic Equivalence Reasoning(SER). It aims at identifying symbolic equiva-

lences[a] I↔ [b], meaning that for allΨ ∈ I, aΨ |δ(a)
↔ bΨ |δ(b)

is a consequence of
Prop(F). It is easy to rewrite the substitution rule to apply all such equivalences
at once, producing at most two symbolic clauses out of each clause involved in. To
reduce the ground size of the formula we substitute[a] for [b] if δ(a) ≤ δ(b), and
vice-versa. SER is performed by extracting all the strongly connected components
(SCCs) from the SIG, temporarily discarding arc labels. Then, for each SCC we

enumerate all its non-intersecting loops[a] I1→ [a1]
I2→ [a2] · · ·

In→ [a] (let us sup-
pose without loose of generality thatδ(a) ≤ δ(ai), i = 1, . . . , n − 1), and apply

the substitutions[a] I↔ [ai], i = 1, . . . , n− 1, with I = (∩j=1,...,nIj)|δ(a).

In our example, all the remaining symbolic clauses are binary. Notice that for the class
of QBF instances with at most two existential literals per clause, the symbolic binary
rules inherit completeness from their standard counterpart.

In the figure aside a fragment of the sample SIG is

depicted. By SER we obtain[c] I↔ [¬g] with I =
{{001, 011, 101, 111}}δ(c) < δ(g), hence:[a,¬c]{0,1} ∧
[¬a, c]{0,1} ∧ [¬f, l]{1010} ∧ [¬c, f]{101} ∧ [¬c,¬l]{1010}.

Then, the failed literal[c]{1} can be deduced from[c]
{101}−→

[f]
{1010}−→ [l]

{1010}−→ [¬c], so[a,¬c]{0}∧[¬a, c]{0}∧[¬a]{1}

[c]1

[a]0[¬g]3

{0,1}

{001,011,
101,111}

{001,011,
101,111}

∧[¬f, l]{1010} remains. By assigning the pure literal[l]1010 and the unit clause[¬a]{1}
we have[a,¬c]{0} ∧ [¬a, c]{0}, hence the empty formula by SER on[c]

{0}↔ [a].
Applied until fixpoint, the above set of rulesR = {SUCP,SPLE,SHBR,SER} de-

fines a satisfiability preserving trasformationNormR :PROPSYMB→PROPSYMB .

4.3 Branching reasoning

In addition to symbolic and SAT reasoning, our representation fits well into search-
based branching decision procedures. As far as QBFs are concerned, branching proce-
dures extend the DPLL-approach [9] to the quantified case [7]. They look for models
following the left-to-right order of the variables in the prefix during a depth-first visit of
the semantic evaluation tree of the formula. Existential variables generateor nodes that
disjunctively split the branch, universal quantifiers are associated toandnodes that split
branches conjunctively. Each noden is labeled by the cofactored matrixM ∗∆ where
∆ is the assignment on the path ton, while the root is labeled by the original matrixM .

10

A model, if one exists, is a subtree with all the
leaves labeled by>, extracted by choosing only
one child for each existential node, and both chil-
dren for conjunctive nodes. For example, the for-
mula∃a∀b∃c.(a∨b∨c)∧(b∨¬c)∧(a∨¬b∨¬c)∧
(¬a ∨ b) is decided to be false by visiting the tree
reported aside and failing to extract any model.
Inspired by the above strategy, we build an evalu-
ation procedure that mixes ground, symbolic, and
branching reasoning. We just need to define the
following projection operator.

(a∨b∨c)(b∨¬c)(a∨¬b∨¬c)(¬a∨b)

a=T a=F

(b∨¬c)(b)

(¬c) (c)(¬c)

b=T b=F b=T b=F

c=T c=T c=Fc=F

TT

T T T T

(b∨c)(b∨¬c)(¬b∨¬c)

ΓI↓α

.= ΓI′ with α ∈ B andI ′ = {〈ψ2, . . . , ψδ(Γ)〉|〈α, ψ2, . . . , ψδ(Γ)〉 ∈ I}

Projection is used for universal branching and is readily extended to formulas:

(∃[e1]δ1 · · · ∃[em]δm .M)↓α= ∃[e1]δ1−1 · · · ∃[em]δm−1.(M↓α) (11)

whereM↓α= ∧ΓI∈MΓI↓α
. Existential branching is done according to Expression (9).

The resulting decision procedure is reported below.
As far as splitting over existential variables is concerned, the purely existential na-

ture ofProp(F) makes the whole procedure more similar to search-based SAT solvers
than toQBF decision procedures. By contrast, when the split is performed over uni-
versal variables, something conceptually different happens: the instance is partitioned
into two completely disjoint existential sub-instances, according to (11).

The two base-cases do not deal with trivial sub-formulas. Well in advance, ei-
ther symbolic reasoning (whenever the current sub-instance falls within its deductive
power) or ground reasoning act as powerful look-ahead tools. The usual enhancements
to branching procedures (backjumping, learning, heuristics, etc.) also apply.

Function symbEval(symbolic formulaF)

begin
F ′ ← NormR(F);
if F ′ = ∅ then

return TRUE;
else if⊥∈ F ′ then

return FALSE;
else

if (|F ′|ground is affordable)then
return SAT(prop(F ′));

else
LetF ′ be∃[e1]δ1 · · · ∃[em]δm .M ;
if (δ1 > 0) then

return symbEval (∃[e1]δ1−1 · · · ∃[em]δm−1.M↓0) and
symbEval (∃[e1]δ1−1 · · · ∃[em]δm−1.M↓1);

else
return symbEval (∃[e2]δ2 · · · ∃[em]δm .M∗ [e1]) or

symbEval (∃[e2]δ2 · · · ∃[em]δm .M∗ [¬e1]);

end

11

5 Implementation and Experimentation

We present a first implementation of our decision procedure and a preliminary exper-
imental evaluation. The interested reader may find further details and a wider experi-
mentation in [3]. The resulting solver—calledsKizzo—is a 60k-line piece of object-
oriented C code managing ROBDDs through the CUDD package [32], version 2.4.0,
and performing SAT solving using zChaff [24], version 2004.5.13.

We focus on a subset of the non-random families of instances collected in the
QBFLIB’s archive [15]. Among the others, we consider (1) Rintanen’s benhmarks [29],
the first and best-known collection of QBF problems, made up of 47 instances divided
into 5 families, obtained by encoding planning problems, (2) Ayari’s benchmarks [1],
made up of 72 instances divided into 5 families, obtained from real-world verification
problems on circuits and protocol descriptions (these instances are quite challenging

Symbolic size (clauses) Ground size (clauses)
Instance Before After Diff. Before After Diff. Symb. time

Adder2-2-c 234 193 -18% 1.0 · 106 5.4 · 105 -46.0% 100%
Adder2-6-s 3,315 2,236 -33% 1.8 · 1012 1.0 · 106 -99.9% 23%
Adder2-8-s 6,060 4,070 -33% 1.0 · 1016 2.2 · 107 -99.9% 14%

BLOCKS3i.5.4 2,640 2,814 +7% 4.0 · 104 3.0 · 104 -25.0% 100%
BLOCKS3ii.5.2 1,886 2,095 +11% 2.9 · 104 2.1 · 104 -28.0% 100%
BLOCKS3iii.5 1,226 1,614 +32% 1.9 · 104 1.3 · 104 -32.0% 100%
CHAIN12v.13 486 0 -100% 1.8 · 106 0 -100.0% 100%
CHAIN17v.18 861 0 -100% 1.1 · 108 0 -100.0% 100%
CHAIN23v.24 1,443 0 -100% 1.2 · 1010 0 -100.0% 100%

cnt08 1,237 0 -100% 6.1 · 104 0 -100.0% 100%
cnt08re 1,309 1,240 -5% 6.5 · 104 1.1 · 104 -83.0% <1%
cnt12 2,505 0 -100% 1.3 · 106 0 -100.0% 100%

cnt12re 2,733 2,820 +3% 1.5 · 106 2.6 · 105 -83.0% <1%
flipflop-9-c 74,066 71,691 -3% 9.4 · 1012 9.2 · 1012 -2.0% 100%
flipflop-10-c 128,245 124,844 -3% 1.3 · 1014 1.3 · 1014 -1.0% 100%
flipflop-11-c 210,674 205,995 -2% 1.7 · 1015 1.7 · 1015 -1.0% 100%

impl04 32 0 -100% 1.4 · 102 0 -100% 100%
impl12 96 0 -100% 3.7 · 104 0 -100% 100%
impl20 160 0 -100% 9.4 · 106 0 -100% 100%

k-branch-n-9 12,923 20,608 +59% 2.1 · 1018 1.6 · 1018 -23.8% 3%
k-branch-p-13 28,676 78,006 +172% 3.7 · 1024 2.9 · 1024 -21.6% 100%

k-d4-n-16 5,133 5,535 +8% 4.2 · 1022 2.4 · 1022 -42.9% 2%
k-d4-p-16 2,959 5,044 +70% 4.7 · 1017 3.1 · 1017 -34.0% 100%
mutex-4-s 362 0 -100% 1.9 · 107 0 -100% 100%
mutex-8-s 834 367 -56% 2.9 · 1012 3.5 · 104 -99.9% 70%

TOILET10.1.iv.20 3,466 3,326 -4% 2.1 · 104 7.4 · 103 -64.8% 55%
TOILET16.1.iv.32 10,495 8,175 -22% 5.6 · 104 8.6 · 103 -84.6% 72%
toilet-a-08-01.11 3,109 1,069 -66% 6.0 · 104 2.7 · 104 -55.0% 3%
toilet-c-10-01.14 1,974 1,874 -5% 7.5 · 103 4.0 · 103 -46.6% 1%
toilet-g-20-01.2 460 0 -100% 1.1 · 103 0 -100.0% 100%

tree-exa2-40 51 1 -100% 5.6 · 1014 1 -100% 100%
tree-exa10-30 58 0 -100% 58 0 -100% 100%

Table 1.The effect of symbolic reasoning over the size of instances.

12

Ayari’s benchmarks Biere’s benchmarks

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.1 1 10 100 1000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Running Time (sec)

sKizzo
quantor

semprop
yquaffle

qube

 0

 10

 20

 30

 40

 50

 0.1 1 10 100 1000

Running Time (sec)

sKizzo
quantor
yquaffle

semprop
qube

Fig. 1.Comparison with other solvers over two groups of families

for modern solvers, and some of them have never been solved), and (3) Biere’s bench-
marks [4], made up of 64 instances divided into 4 families, where then-th instance in
each family refers to model checking problem on an-bit counter. The verification is
easy for BDD-based symbolic MC and very difficult for SAT-based bounded MC, as
it captures the worst-case scenario in which the number of steps necessary to falsify
the property equals the diameter of the system. QBF reasoning has been shown not to
outperform SAT-based reasoning (Bounded Model Checking) on these benchmarks.

Table 1 measures the relative importance of symbolic reasoning w.r.t. all the other
reasoning strategies. It puts side by side the symbolic/ground size of a few instances
before and afterNormR is applied for the first time. The last column gives the amount
of time spent in (the first application of) symbolic reasoning. When this percentage is
equal to100%, the instance is just symbolically solved. As expected, the ground size
of instances is always reduced, whilst the symbolic size of some of them is increased
as an effect of symbolic reasoning. The reduction ratio for the ground size is quite
family-dependent, though not sensibly instance-depending. Most of the simpler families
are completely solved by symbolic reasoning. Conversely, for more complex instances
symbolic reasoning does not suffices. Quite often, the number of ground clauses before
symbolic reasoning is intractable (state-of-the-art solvers can afford millions clauses,
not billions). Some of them stays unaffordable even afterNormR, but many undergo a
strong reduction of the ground size. Several problems exist that—thought not strongly
reduced during the first call toNormR—are hardly simplified during the recursive calls
(not shown in the table). The overall effect of symbolic reasoning is quite incisive.

Figure 1 comparessKizzo with publically available state-of-the-art solvers, among
which we find the three top-rated solvers according to most of the results presented
in [20] (see also Section 6). The number of solved instances in two groups of families
is plotted against the (non-cumulative) time taken to solve such instances. The overall
performance is quite impressive, especially if we take into consideration thatsKizzo is
just a first non-optimized implementation.

13

6 Related work and discussion
Most QBF solvers leverage revised versions of search-based techniques developed in
the SAT framework, ranging from the extension of resolution-based reasoning [18] to
the employment of lookback techniques [23], encountering along the way a key contri-
bution by Cadoli, Giovanardi and Schaerf [7] in which the original extension of DPLL
to QBF is presented. Up to a certain point, these extensions have been successful. In
the solver evaluation reported in [21], all the competitive solvers (such as QSAT [30],
QSOLVE [11], QUAFFLE [34], QuBE [15], SEMPROP [22]) are search-based.

A few alternative algorithms for QBF are emerging [20]. Some of them reverse the
order in which quantifiers are considered (such as Quantor [4]), others employ some
compact representation for the problem (such as ZQSAT [14] and QMRES/QBDD [28]).
Many restate the very goal of the solver: it is no longer a matter ofsearching for a so-
lution, rather an attempt to directlysolve the instance(this distinction traces back to [9,
10]). Resolution-based solving techniques have also received renewed attention, espe-
cially when used in conjunction with compressed representation for clauses [8, 13, 25].
In the SAT framework, these so-calledsymbolicapproaches show a certain strength
on specific classes of instances, but seem to be not competitive in general [27]. In the
QBF scenario, both the idea ofcompressed/symbolicrepresentations, and the shift from
searchingto solvingare more promising [28, 4, 14].

The foundational work of Skolem [31] has had the widest possible application. We
here just cite a recent work by Jackson [16]. Forms of reasoning about binary sub-
formulas are regarded as an effective pre-processing step in the propositional frame-
work [2]. The interest in binary decision diagrams as a tool for manipulating boolean
functions traces back to the seminal work by Bryant [6]. Their usage in SAT/QBF sat-
isfiability algorithms have been explored at least in [33, 8, 25, 13, 27, 28, 14].

Several features distinguish our approach from previous ones. For example, it: (1)
largely abstracts over variable ordering and number of alternations in the prefix; (2) ex-
plicitly leverages skolemization; (3) profits from the peculiar structure of QBF-derived
instances to symbolically represent them; (4) advantageously integrates search-based
and solving decision strategies in QBF reasoning; (5) repeatedly engages a SAT solver
as an oracle; (6) employs a hybrid PROP/QBF branching style. For further differences
and an in-depth comparison, see [3].

7 Conclusions and future work
Our work is motivated by the outstanding potential of QBF in applications. Advances in
decision procedures for this formalism are ardently expected, and quantified reasoners
worhty of inheriting the amazing success of SAT solvers are a looming possibility. In
this respect, we firstly succeed to efficiently retain both the expressive power of quan-
tification and the strength of the purely propositional reasoning. Our preliminary ex-
perimental evaluation yields remarkable results. Large room for improvements exist as
(1) our implementation is just a first, non-optimized prototype, and (2) several effective
QBF and SAT reasoning techniques (q-resolution, subsumption control, backjumping,
etc.) have been left out of the first implementation to focus on the main topic.

To further investigate our guideline, we are (1) strengthening the symbolic machin-
ery by adding new rules, (2) conceiving a symbolicmodel verifier, and (3) designing
the integration with an industrial-scale model checker.

14

Acknowledgements

I thank Gigina Aiello and Paolo Traverso for supporting my research efforts, and Sara
Bernardini for the many days she has spent on listening to my early ideas on symbolic
skolemization. I’m grateful to Marco Cadoli for discussing this work with me. Finally,
Amedeo Cesta deserves a special thought for his indefatigable encouragement.

References
1. A. Ayari and D. Basin. Bounded Model Construction for Monadic Second-order Logics. InProc. of CAV’00, 2000.
2. F. Bacchus and J. Winter. Effective Preprocessing with Hyper-Resolution and Equality Reduction. InProc. of SAT’03,

2003.
3. M. Benedetti. sKizzo: a QBF Decision Procedure based on Propositional Skolemization and Symbolic Reasoning,

Tech.Rep. 04-11-03, ITC-irst, available atsra.itc.it/people/benedetti/sKizzo , 2004.
4. A. Biere. Resolve and Expand. InProc. of SAT’04, pages 238–246, 2004.
5. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Checking without BDDs. InProc. of

Design Automation Conference, volume 1579, pages 193–207, 1999.
6. R. E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE Transaction on Computing, C-

35(8):677–691, 1986.
7. Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to evaluate quantified boolean formulae. In

Proceedings of the fifteenth national/tenth conference on Artificial intelligence/Innovative applications of artificial
intelligence, pages 262–267. American Association for Artificial Intelligence, 1998.

8. P. Chatalic and L. Simon. Multi-Resolution on compressed sets of clauses. InProceedings of the Twelfth International
Conference on Tools with Artificial Intelligence (ICTAI’00), 2000.

9. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Journal of the ACM, 5:394–397,
1962.

10. M. Davis and H. Putnam. A computing procedure for quantification theory.Journal of the ACM, 7, 1960.
11. R. Feldmann, B. Monien, and S. Schamberger. A Distributed Algorithm to Evaluate Quantified Boolean Formulas. In

Proceedings of the AAAI National Conference on Artificial Intelligence, pages 285–290, 2000.
12. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer Verlag, 1996.
13. J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dransfield, and W. Vanfleet. SBSAT: a state-based, BDD-based

satisfiability solver. InProceedings of SAT’03, 2003.
14. M. GhasemZadeh, V. Klotz, and C. Meinel. ZQSAT: A QSAT Solver based on Zero-suppressed Binary Decision Dia-

grams, available atwww.informatik.uni-trier.de/TI/bdd-research/zqsat/zqsat.html , 2004.
15. E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE: A system for deciding Quantified Boolean Formulas Satisfia-

bility. In Proc. of the International Joint Conference on Automated Reasoning (IJCAR’2001), 2001.
16. Daniel Jackson. Automating first-order relational logic. InProceedings of the 8th ACM SIGSOFT international

symposium on Foundations of software engineering, pages 130–139. ACM Press, 2000.
17. H. Kautz and B. Selman. Planning as satisfiability. InProc. of ECAI 1992, pages 359–363.
18. H. Kleine-Buning, M. Karpinski, and A. Flogel. Resolution for quantified Boolean formulas.Information and Com-

putation, 117(1):12–18, 1995.
19. T. Larrabee. Test pattern generation using boolean satisfiability. InIEEE Transaction on Computer-aided Design,

pages 4–15, 1992.
20. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. Second QBF solvers evaluation, avaliable on-line at

www.qbflib.org , 2004.
21. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the SAT’03 evaluation of QBF solvers, avaliable

on-line atwww.qbflib.org , 2003.
22. R. Letz. Advances in Decision Procedures for Quantified Boolean Formulas. InProceedings of the First International

Workshop on Quantified Boolean Formulae (QBF’01), pages 55–64, 2001.
23. R. Letz. Lemma and model caching in decision procedures for quantified boolean formulas. InProc. of the Int. Conf.

on Automated Reasoning with Analytic Tableaux and Related Methods, pages 160–175. Springer-Verlag, 2002.
24. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Efficient SAT Solver. In

proceedings of the 38th Design Automation Conference, 2001.
25. D. B. Motter and I. L. Markov. A compressed, breadth-first search for satisfiability.LNCS, 2409:29–42, 2002.
26. A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In Alan Robinson and Andrei Voronkov,

editors,Handbook of Automated Reasoning, chapter 6, pages 335 – 367. Elsevier, Amsterdam, Netherlands, 2001.
27. G. Pan and M.Y. Vardi. Search vs. Symbolic Techniques in Satisfiability Solving. InProceedings of SAT 2004, 2004.
28. G. Pan and M.Y. Vardi. Symbolic Decision Procedures for QBF. InProceedings of the Tenth International Conference

on Principles and Practice of Constraint Programming (CP04), 2004.
29. J. Rintanen. Construction Conditional Plans by a Theorem-prover.Journal of A. I. Research, pages 323–352, 1999.
30. J. Rintanen. Partial implicit unfolding in the davis-putnam procedure for quantified boolean formulae. InProceedings

of the International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’01), 2001.
31. T. Skolem. Logico-combinatorial investigations in the satisfiability or provability of mathematical propositions: a

simplified proof of a theorem by L. L̈owenheim and generalizations of the theorem. InFrom Frege to G̈odel. A Source
Book in Mathematical Logic, 1879-1931, pages 252–263. Harvard University Press, Cambridge, 1967 (1920).

32. Fabio Somenzi. Colorado University Binary Decision Diagrams,vlsi.colorado.edu/ ∼fabio/CUDD , 1995.
33. T. E. Uribe and M. E. Stickel. Ordered binary decision diagrams and the Davis-Putnam procedure. In J. P. Jouannaud,

editor,1st International Conference on Constraints in Computational Logics, volume 845, pages 34–49, 1994.
34. L. Zhang and S. Malik. Towards Symmetric Treatment of Conflicts And Satisfaction in Quantified Boolean Satisfiabil-

ity Solver. InProc. of CP’02, 2002.

15

