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BP 6759 – F45067 Orléans Cedex 2, France
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Abstract
The QCSP+ language we introduce extends the
framework of Quantified Constraint Satisfaction
Problems (QCSPs) by enabling us to neatly ex-
press restricted quantifications via a chain of nested
CSPs to be interpreted as alternately conjuncted
and disjuncted. Restricted quantifiers turn out to
be a convenient solution to the crippling modeling
issues we encounter in QCSP and—surprisingly—
they help to reuse propagation technology and to
prune the search space. Our QCSP+ solver—which
also handles arithmetic and global constraints—
exhibits state-of-the-art performances.

1 Introduction
We extend the QCSP (Quantified Constraint Satisfaction
Problem) framework by introducing a new language, called
QCSP+. Such extension is motivated by the difficulties we
experienced in modelling and solving most non-trivial prob-
lems as plain QCSPs. So, let us start by describing (Q)CSP,
in order to point out some of its modeling weaknesses.

A CSP is a search problem established by giving a set of
variables ranging over finite domains, and a conjunction of
constraints mentioning such variables. For example, given
x ∈ {1, 2, 3}, y ∈ {3, 4}, and z ∈ {4, 5, 6}, the CSP

x < y ∧ x + y = z ∧ z $= 3x

is solved by selecting (if possible) one value for each variable
in so as to satisfy the three constraints at once. For example,
x = 1, y = 4, z = 5 is a valid solution, while x = 2, y = 4,
z =6 is not. CSP formulations are naturally suited to model
real-world problems, and countless applications exist indeed.

For the sake of this paper, a CSP problem is best viewed
as a decision problem in which all the variables are quanti-
fied existentially (i.e. the existence of one single consistent
assignment suffices to answer the problem positively):

∃x∈{1, 2, 3}∃y∈{3, 4}∃z∈{4, 5, 6}. x < y∧x+y = z∧z $= 3x

The seemengly inconsequential amendment of making quan-
tifiers explicit leads us to play in an entirely new field [Bor-
deaux and Monfroy, 2002]: What if (some of) the variables
are quantified universally? For example, what means for
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∃x∈{1, 2, 3}∀y∈{3, 4}∃z∈{4, 5, 6}. x < y∧x+y = z∧z $= 3x
(1)

to be true? The most intuitive way of entering the new sce-
nario is by thinking of it as a game between two players. One
player is associated to the existential quantifier—we call him
the ∃-player—the other is related to the universal quantifier:
the ∀-player. The goal of the ∃-player is to satisfy each con-
straint, hence to satisfy the whole CSP. The goal of the ∀-
player is to violate at least one constraint, thus overcoming
the opponent’s effort. The two players play against each other
in turn, for a finite and fixed number of rounds. The moves
they do consist in assigning values to variables. Which vari-
ables get assigned at each step is statically decided by the
left-to-right order in the prefix of the problem (in our exam-
ple, the prefix is “∃x ∈ {1, 2, 3}∀y ∈ {3, 4}∃z ∈ {4, 5, 6}”).

In (1), the ∃-player plays first, and he is given the chance
to choose a value for x. Then, it is time for the ∀-player to
assign a value to the variable y. Finally, the ∃-player assigns
z and the game terminates: The satisfaction of the set of con-
straints is evaluated. We say that such quantified CSP (QCSP)
is true if the ∃-player has a winning strategy—i.e. if he can
manage to satisfy every constraint whatever the universal op-
ponent does—and is false otherwise. For example, (1) is true,
while it becomes false if we change the prefix to ∀x∃y∀z. As
opposed to the purely existential CSP case, the order of quan-
tifiers is important: By flipping y and z in (1) we play under
the prefix ∃x∃z∀y, and the existential player looses the game.

QCSP is widely believed to be strictly more “powerful”
than CSP: An entire hierarchy of QCSP problems exists for
which no equivalent CSP formulation can be written “com-
pactly” (QCSP is PSPACE-complete, CSP is NP-complete).
Some of these problems are openly perceived as games by hu-
mans (i.e. board games), while in others the underlying game
structure is camouflaged (see Section 2).

Despite the expectation engendered by the strength of the
language, we find in the literature no single account of a real-
world model1 actually solved by a QCSP solver. Why?

A partial explanation is that QCSP solvers are in their in-
fancy and miss most (quantified) constraint propagators, i.e.
forward inference rules that are vital to cut the search space.

1By real-world model we mean any model designed to cap-
ture the pre-existing and human-intelligible semantics of some
problem—e.g. the ones in Section 2—as opposed to random models
that obey merely syntactical generation patterns.



This limitation discourages or prevents people from invest-
ing in the production of realistic models. However, we have
recently built a full-fledged QCSP solver [Benedetti et al.,
2006b], which manages several constraints. Even so, models
of many “natural” cases stay surprisingly difficult to devise.

To pinpoint the problem, let us take a step back to QCSP as
a game between ∃ and ∀, and let us observe that with games
almost invariably come rules: Some choices could be pre-
cluded as a function of previous choices by the same player
or by the opponent. An elementary example is the prohibi-
tion in most board games to play in a cell already occupied
by someone. In the QCSP game, this means that players can-
not in general assign variables in arbitrary ways. The set of
legal choices is dynamically restricted over a game life-span
in relation to the moves already occurred, so to comply with
an underlying game discipline. The observance of such disci-
pline is precisely what plain QCSPs find difficult to enforce.

No support for dynamic ranges of variables is provided by
the prefix: In (1) z ranges over {4, 5, 6} whichever the values
chosen for x and y. So, we have to embed the game dis-
cipline in the constraints. It is a matter of stating that if a
player chooses a forbidden value (or combination of values)
he looses immediately. Such threat is promptly posed to the
∃-player: We consider the membership of the move to the set
of legal moves as just an additional constraint. If the ∃-player
cheats, he makes such constraint false, he looses the game.

No similar expedient can be used against the ∀-player: The
game is a loss for him when all the constraints are satisfied,
a thing which simply cannot be imposed by just conjunct-
ing whatever additional constraint. Rather, to solve such ∀-
discipline problem we should slightly modify the whole for-
malization. This reformulation-based approach has been pre-
sented in [Ansótegui et al., 2005] for the case of two-players
QBF games but, for the reasons discussed in Section 4, it
comes out to be an unsatisfactory remedy to our problem.
So, let us introduce a different solution, based on handling
the game rules explicitly. As we shall see shortly, QCSP is
not enough to plainly state the new formalization as it lacks
support for disjunctions between constraint sets. Consider the
following problem (in which rules are provisionally absent)

∀X1∃Y1∀X2∃Y2.C(X1, X2, Y1, Y2) (2)

Let uppercase letters denote sets of variables rather than a
single variable (domains are not shown). Suppose the legal
opening moves for ∀-player are characterized by a set of con-
straints (a CSP) L∀

1(X1), i.e. an assignment to the variables
in X1 is a legal opening move iff it is a solution to L∀

1 in the
classical CSP sense. Next, ∃-player’s reply at second step
is constrained by some CSP L∃

1(X1, Y1): Once the choices
over X1 from ∀-player’s side are known, an assigment over
Y1 is to be considered only if it solves L∃

1 . Likewise, rules
L∀

2(X1, Y1, X2) and L∃
2(X1, Y1, X2, Y2) are provided. To cap-

ture this scenario, we introduce restricted quantifiers qX[L],
with q ∈ {∃, ∀}: They quantify over X yet only span over
those assignments to X which comply with the CSP-based
rule L. With this compact notation, our example is written:
∀X1[L

∀
1(X1)]. ∃Y1[L

∃
1(X1, Y1)]. ∀X2[L

∀
2(X1, Y1, X2)].

∃Y2[L
∃
2(X1, Y1, X2, Y2)]. C(X1, X2, Y1, Y2)

which reads “for all the assignments to X1 such that L∀1
holds, exists an assignment to Y2 such that L∃1 holds and for

all...”. We can reshape the above formula as a prenex QCSP
as we realize that the “such that” connective stays for a con-
junction when ∃-player is involved, and for an implication
when ∀-player is concerned. So, we actually ask whether

∀X1(L
∀
1 → ∃Y1(L

∃
1 ∧ ∀X2(L

∀
2 → ∃Y2(L

∃
2 ∧ C)))) (3)

or, in an equivalent prenex form with explicit disjunction, if
∀X1∃Y1∀X2∃Y2.(L∀

1 ∨ (L∃
1 ∧ (L∀

2 ∨ (L∃
2 ∧ C)))) (4)

Statement (4) shows that the most natural way to express re-
stricted quantifiers would be to extend the language to handle
disjunctions. But, a shift to general non-conjunctive CSPs
would hamper the critical opportunity to inherit the huge
amount of propagators already implemented for the purely
conjunctive case. We would fall back into the inability to ex-
ercise CSP tools on real problems, by having a nice formalism
with just a proof-of-concept or no implementation at all.

Our solution is to design a limited disjunctive extension of
the QCSP formalism, which is (i) enough to express all the
disjunctions originating from the use of restricted (universal)
quantifications, but is (ii) still capable of inheriting and exer-
cising the reasoning core of standard (Q)CSP solvers.

∃Y1

∀X1

→

L∃
n

∧

∀X2

L∀
1

L∃
1

∃Xn

∧

→

L∀
2

C(X1,Y1, . . . ,Xn,Yn)

From a FOL perspective, the syntactic shape of
the problems we introduce—the QCSP+ prob-
lems, generalizing Example (3-4)—is a chain
of nested alternated quantifications with re-
strictions (depicted aside). This language is
cognitively adequate to represent game-with-
rules scenarios (modeler’s viewpoint, Section
2), and at the same time is amenable to be de-
cided by reusing existing technology (solver’s
viewpoint, Section 3). Indeed, each restric-
tion rule is a standard CSP, inside which the
usual propagation procedures can be capital-
ized. What is to be designed is (i) an exter-
nal search-guiding mechanism that evaluates
the truth value of the alternated chain of CSPs
as a function of the truth value of the leaves,
and (ii) an inter-leaf propagation scheme that
reconciles the separate CSPs and makes them
share information in a sound way. As a final
note, let us observe that the “game-with-rules”
scenario we target is definitely not a marginal
modeling case. On the contrary, the usage of

restricted quantifiers is so natural (see Section 2) that one
ends up wondering which non-trivial problems can be mod-
eled as plain QCSPs! The relation between our approach and
recent contributions in the close field of QBF decision pro-
cedures is discussed in Section 4. The implementation of a
full-fledged solver and experiments on quantified models are
presented in Section 5. In Section 6 we summarize our con-
tributions and present directions for future work.

2 Motivating Examples
The concepts involved in the modeling of the following com-
mon problems are naturally captured as a conjunction of con-
straints. However, the questions we ask require universal
quantifiers and disjunctions in exactly the QCSP+ style.
Problem 1 Suppose some (partial) ordering * is established
to rank the solutions of a given CSP P . While a CSP is not



enough to compactly characterize the best solutions of P w.r.t.
*, QCSP+ gives to the problem an elegant one-move game
formulation: ∃X[P (X)]. ∀Y [P (Y )]. Y * X.

In the following example [Cadoli et al., 1997], solutions to
the CSP represent sets, and the⊆ relation creates preferences.
Example 1 (Strategic Companies) We are given a collec-
tion C of companies, a set G of goods, and a relation Prod⊆
C×G to specify which goods each company produces. Com-
panies have reciprocal financial participations, and a subset
C′⊆C that owns more than 50% of some c∈C is said to be a
controlling set for c. A company may have many controlling
sets. They all are represented by a relation Contr⊆2C×C. A
set of companies S⊆C is “production-preserving”—written
PP(S)—if it (i) covers all the goods in G, i.e. by cumulat-
ing the goods g such that 〈c, g〉 ∈ Prod and c ∈ S we obtain
G; and (ii) is closed under the controlling relation, i.e., for
each 〈C′, c〉 ∈ Contr, if C′ ⊆ S then c ∈ S. A strategic set
is any subset-minimal production-preserving set (i.e. the PP
property is lost in each proper subset of a strategic set). A
company x∈C is not strategic (intuition: it can be sold with
no impact on either the overall portfolio of goods or the con-
trolled companies) if it belongs to no strategic set, i.e. if
∀S[S ⊆ C ∧ PP(S) ∧ x ∈ S]. ∃S′[PP(S′) ∧ x /∈ S′]. S′ ⊂ S

The Prod and Contr relations as defined above can be easily
expressed in propositional logic. We adopted such restricted
version to enable a direct comparison with boolean reason-
ers (Section 5). More realistic models—mentioning explicit
amounts of goods, capacity of production and percentage of
participations—still fit nicely in the CSP vocabulary, but they
lay outside the natural reach of propositional logic.
Problem 2 (Game strategy) Let a set of variables Xi de-
scribe the state at step i of a system evolving after the al-
ternate moves of two opponents p∀ and p∃, selected out of
a finite set of possibilities. A game is defined by a 4-tuple
〈PA, SSA, G, I〉 of CSPs: A move M in a state X is only pos-
sible when the precondition axiom PA(X, M) is satisfied and
leads to a new state X ′ defined by the successor state axiom
SSA(X, X ′, M). Initial and winning conditions are recog-
nized by I(X) and G(P, X) respectively (with P ∈ {p∀, p∃}).
Let ∀ denote ∃ and vice-versa. The first player p∃ wins the
game in at most k rounds if ∃X0[I(X0)].WS(∃, 1), where

WS(q, i) := qXi, Mi[ PA(Xi−1, Mi) ∧G(pq, Xi−1)∧
SSA(Xi−1, Xi, Mi)].WS(q, i+1)

for i < 2k, and WS(q, i) := G(pq, Xi−1) for i = 2k.
The next example shows QCSP+ escaping the intricacies of
game formalization we find in e.g. [Gent and Rowley, 2003].
Example 2 (Connect n×m−k) Let B=(bij)∈{0, p∀, p∃}n×m

be a matrix of variables representing the board state in a gen-
eralized Connect-4 game (played on a n×m board in the at-
tempt to align k signs). The existence of a winning strategy
for the first player is modeled by posing PA(B, x) := bnx $=0,
where x∈[1..m] is the column of the current move, and using

∧i∈[1..n]j∈[1..m](bij $=b′ij) ↔ (j=x∧ bij =0∧ b′ij =P ∧ bi−1j $=0)

as SSA(B, B′, x), where P ∈ {p∀, p∃} is the current player.
The initial condition I(B) is ∧ijbij =0. The G CSP is a con-
junction of allDifferent constraints excluding each alignment.

Problem 3 (Conformant Scheduling) Consider n tasks of
duration δ1 . . . δn requiring an amount of resource r1 . . . rn,
and subject to the ordering constraints O⊆[1..n]×[1..n], where
〈i, j〉 ∈ O means that task i must end before task j starts. We
want to schedule the tasks so that (i) we finish by time T , (ii)
we comply with O, and (iii) the instantaneous resource con-
sumption never exceeds a fixed capacity R. A global con-
straint cumulative(R, t1, δ1, r1, . . . , tn, δn, rn) is provided by
most CSP solvers to check the latter condition. We have a
degree of uncertainty about the actual resources required by
each task. An hostile environment can impact on them, sub-
ject to certain constraints EM(r1, . . . , rn). Is it possible to
devise an adversary-safe schedule?

∃t1, . . . , tn[∧〈i,j〉∈Oti+δi ≤ tj ]. ∀r1, . . . , rn[EM(r1, . . . , rn)].
cumulative(R, t1, δ1, r1, . . . , tn, δn, rn) ∧max(ti+δi) ≤ T

Example 3 Consider three tasks to be completed within
time T = 4 and without surpassing a capacity R = 5, with
δ1 = 1, δ2 = 2, δ3 = 3, r1 = 3, r2 = 2, and r3 = 1. Task 1 has
to finish before Task 2 starts. We seek an attack-safe schedule,
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under the assump-
tion that the en-
vironment can add
one unit of cost to
up to two tasks.
The picture aside
shows that the opti-
mal schedule (A) is
subject to critical

attacks, the linear schedule (B) exceeds T , while the solution
(C) to the our QCSP+ instance meets all the requirements.

3 Formalizing and Deciding QCSP+

Let V be a set of variables and D = (Dv)v∈V the family
of their domains (hereafter we tacitly assume an underlying
global version of V and D). For W ⊆ V , we denote by DW

the set Πv∈W Dv of tuples on W . The projection of a tuple t
(or a set of tuples T ) on a variable v (or a set of variables W )
is denoted by t|v (or T |W ). A constraint is a couple c=(W, T )
with W ⊆ V and T ⊆ DW (W and T are noted var(c) and
sol(c)). A CSP is a set of constraints. For a CSP C, we note
by var(C)=

S
c∈C var(c) its variables and by sol(C) =!"c∈C

sol(c) its solutions, where—for any W, U ⊆ V , A ⊆ DW , and
B ⊆ DU —it is A !" B = {t∈DW∪U | t|W ∈A ∧ t|U ∈B}. We
name range over W ⊆ V any function R with domain W that
associates to each v ∈ W a subset R(v) ⊆ Dv .

Definition 1 (Restricted quantifier) A restricted quantifier
is a 4-tuple Q = (q, W, R, C) where q ∈ {∃, ∀}, W is a set of
variables, R is a range over W , and C is a CSP.

Definition 2 (QCSP+) A QCSP+ with free variables F is
a couple (QS, G), where the quantification structure QS is
a finite (possibly empty) sequence [Q1, . . . ,Qn] of restricted
quantifiers Qi = (qi, Vi, Ri, Ci) for which it holds that

• ∀i, j ∈ [1..n], Vi ∩ F = ∅ and i $= j ⇒ Vi ∩ Vj = ∅

• var(Ci) ⊆ Wi ∪ F with Wi =
S

j≤i Vj

and G is a CSP, called goal, with var(G) ⊆ Wn ∪ F . If F = ∅
the QCSP+ problem is said to be closed.



Consistently with the examples already presented, we com-
pactly denote such QCSP+ by writing:

q1V1 ∈ R1 [C1]. . . . . qnVn ∈ Rn [Cn].G

Only two closed QCSP+ with an empty quantification
structure exists: ([ ],7) and ([ ],⊥), where 7 denotes the
empty CSP, and ⊥ stands for any CSP which contains
an empty constraint. Given a QCSP+ problem P =
([(q1, V1, R1, C1), . . . , (qn, Vn, Rn, Cn)], G) with free vari-
ables F , the result of assigning the value a∈Dv to a variable
v∈F , written P [v=a], is defined as P =([(q1, V1, R1, C1[v=
a]), . . . , (qn, Vn, Rn, Cn[v = a])], G[v = a]), where the assign-
ment to a CSP is in turn obtained by collecting the result
of the assignments to each constraint: Given a constraint
c = (W, T ), it is c[v = a] = c if v /∈ W . Otherwise, it is
c′ = c[v = a] = (W ′, T ′) where W ′ = W \ {v} and T ′ = {t′ ∈
DW ′

| ∃t ∈ DW , t|W ′ =t′∧ t|v=a}. This notion extends natu-
rally to tuple-assignments [W = t], with W ⊆ V , t∈DW . For
any W ⊆ V , t ∈ DW , and any range R over W , let us write
t∈W R to mean ∀v ∈ W t|v ∈ R(v).
Definition 3 (Evaluation of a QCSP+) Any closed QCSP+

(QS, G) evaluates to a value in {true,false} as follows.
base case. eval(([ ],7))=true and eval(([ ],⊥))=false.
inductive case. Let it be QS = [(q, W, R, C) | QS′]. It is

eval((QS, G)) = true iff: (i) q = ∀ and for all t ∈ W R
such that t∈sol(C), it is eval((QS′, G)[W =t]) = true, or
(ii) q=∃ and there exists t∈W R such that t∈sol(C) and
eval((QS′, G)[W =t]) = true.

The decision procedure we implement closely mimics the
definition of eval, and is based on a classical depth-first re-
cursive search of the and/or tree associated to a quantification
structure. As in CSP solvers, a form of forward-inference
(called propagation) is of key importance to prune the search
space, and is exercised in each search node. What is peculiar
to QCSP+ is exactly the way this propagation operates, and
the way it builds on top of standard CSP propagation.

We model a CSP propagation scheme as parametric func-
tion propP (·)—where the parameter P is a CSP—whose do-
main and co-domain are the families of ranges over var(P ).
The result R′ = propP (R) of a propagation over R is meant
to contract the range of each variable (hence to reduce the
branching factor of the search) while preserving the solu-
tions of P . This means that for any variable v ∈ var(P )
it is R′(v) ⊆ R(v), but at the same time for each solution
t ∈ sol(P ), if t|v ∈ R(v) then t|v ∈ R′(v). Propagation is
computed by a chaotic iteration as the greatest common fix-
point of the domain-reduction operators associated to each
constraint c ∈ P , where the operator for c prunes values that
fail a local consistency check against c [Apt, 1999].

If R1 is a range over W1 and R2 is a range over W2 (W1 ∩
W2 = ∅), we define R = R1 9 R2 as R(v)=R1(v) if v ∈ W1

and R(v) = R2(v) if v ∈ W2. We note projections of ranges
onto sub-domains by |, so e.g. R|W1 = R1 and R|W2 = R2.

The analogous of propagation in QCSP+ is as follows.
Definition 4 (Cascade Propagation) Given a propagation
scheme prop, a QCSP+ problem P , and a range RF for the
free variables F of P , the QCSP+ problem cascade(P ) ob-
tained by cascade propagation from P is defined as follows.

base case. It is cascade(([], G)) = ([],⊥) if, for any v ∈ F ,
we have R′(v) = ∅, where R′ = propG(RF ). Otherwise,
cascade(([], G)) = ([], G).

inductive case. Let it be P = ([(q, W, R, C)|QS], G) and
R′ = propC(RF 9 R). If for any v ∈ F ∪ W it is
R′(v) = ∅, then cascade(P ) = ([],7) if q = ∀, and
cascade(P )=([],⊥) if q=∃. Otherwise (no empty range
in R′), it is cascade(P ) = ([(q, W, R′|W , C)|QS′], G′)
where (QS′, G′)=cascade((QS, G)) is computed using
the new range R′ for the free variables F∪W of (QS, G).

The intuition is that propagation at the level of each restricted
quantifier (q, W, R, C) is the “authoritative” source of infor-
mation about the new ranges of W . Conversely, for variables
in var(C)\W a private temporary version of the ranges is em-
ployed where all the prunings realized by dominating scopes
are cumulated. Such collective result flows through the chain
of authoritative propagations to boost them, then vanishes.

The alternated structure of QCSP+ endows cascade prop-
agation with an intrinsic advantage over the usual quanti-
fied arc-consistency of QCSP: It turns the global consistency
check for values in universal domains into a local property,
decidable at the level of single constraints in the CSP rule
of restricted quantifiers. This way, we expunge values from
both universal and existential domains, symmetrically, by just
(re)using quantification-unaware CSP propagators.

We call validity preserving any mapping op : QCSP+ →
QCSP+ such that ∀P ∈ QCSP+, eval(P ) = eval(op(P )),
and we say that op is a contractor if ∀P = (QS, G) ∈
QCSP+, P ′ = (QS′, G′) = op(P ) it is (i) |QS′| ≤ |QS|, (ii)
var(P ′) ⊆ var(P ), and (iii) for every (q, W, R, C) ∈ QS,
(q′, W ′, R′, C′) ∈ QS′, if v ∈ W ∩W ′ then R′(v) ⊆ R(v).
Theorem 1 Cascade propagation is a validity-preserving
contractor for QCSP+ problems.
The above property guarantees soundness and termination of
the decision procedure, which performs cascade propagation
at each search node. For details see [Benedetti et al., 2006a].

4 Discussion and Related Works
Concerns about the unsuitability of QCSP to model real cases
have not been raised so far2: Current random models do not
clash with the issues addressed in this paper. QCSP+ has
been designed in fact to provide crucial benefits in the up-
coming development of more realistic models.

The existence of a “∀-discipline” issue in quantified con-
junctive languages has been recently identified by the QBF
community [Ansótegui et al., 2005]. A static version of the
same question has been discussed for the case of QBF encod-
ings of multi-valued QCSP variables whose boolean mapping
needs to avoid “illegal” combinations [Gent et al., 2004].

This problem impacts on QCSP remarkably more than
on QBF: The latter does not bother at all with the mod-
eler’s viewpoint, as it is not required for a human to write
or understand a QBF specification. Such QBF is obtained
through a computer-assisted compilation which starts from

2Such weakness is being quickly realized, as witnessed by the
independent proposal of a framework focusing on simplifying the
QCSP modeling of two-player games [Bessiere and Verger, 2006].



some higher-level language and terminates in a process called
CNF-ization. This consists in casting the meaning of any
structured formula into a CNF by conjuncting the clause-
based local meaning of each sub-formula through the help
of auxiliary variables [Plaisted and Greenbaum, 1986]. A
natural workaround to the discipline problem comes out of
this mechanism: We reduce to a conjunctive matrix the entire
meaning of e.g., (4). This trick has since ever been adopted—
often tacitly—in QBF models, and is the reason why a library
of real-world instances exists [Giunchiglia et al., 2001].

A more structured QBF encoding technique—applied to
two-player games—has been proposed in [Ansótegui et al.,
2005], where indicator variables are introduced to connect in
a suited QBF the SAT-PLAN propositional encoding of pre-
conditions, effects, etc [Kautz and Selman, 1992]. However,
this approach is shown to lead search-based solvers to ex-
plore artificially enlarged search spaces, an effect which can
be mitigated either by employing encodings tuned to trigger
a synergy between top-down search and boolean inference
mechanisms, or by feeding the solver with information on the
special role of indicator variables. More recently, DNF rep-
resentations for boolean constraints have been adopted to re-
duce the search space [Sabharwal et al., 2006; Zhang, 2006].

These approaches involve intricate details, or do not intro-
duce explicitly a language/semantics. They demand search-
based solvers, or exploit boolean-only concepts (e.g. DNF),
or focus on (human-level) games rather than on the general
issue of modeling concepts through quantified constraints.

Conversely, restricted quantification is a fairly general and
neat solution, inspired by analogous forms of quantification
found in other modeling languages under the name of qual-
ified (Description Logic), or bounded (Logic Programming),
or restricted quantification (Logic and Semantics Theory).

Restricted quantifiers—which allow us to reuse propaga-
tion technology and are not exclusively designed for search-
based reasoners—can be fully “back ported” to the realm of
QBF, where they yield the QBF+ language, defined as the
restriction of QCSP+ to boolean variables and clausal con-
straints. QBF+ will be studied in a forthcoming paper, but a
first application is presented in the next section.

The QBF-inspired techniques mentioned above can be in-
terpreted as workarounds to bypass restricted quantifiers in
QBF. While first evidences suggest (cfr. next section) that re-
stricted quantifiers may be equally rewarding in QBF, their
introduction in QCSP is supported by compelling arguments,
as major obstacles prevent us from adapting other solutions:
First, the modeler should be made responsible for captur-
ing the semantics of the alternating structure in (4). This
threatens one of the fundamental assumptions of (Q)CSP:
Models have to be human-writable and readable. Second,
QCSP constraints cannot undergo arbitrary syntactic manipu-
lations as clauses do. To illustrate the problem, let us consider
the QCSP+ formula ∃X[C1(X)]∀Y [C2(X, Y )].C3(X, Y ). One
way to attain a QCSP version of this formula would be
to define a (single) constraint over X ∪ Y whose meaning
is C1(X) ∧ (C2(X, Y ) ∨ C3(X, Y )), to be processed by a
quantified extension of the GAC-scheme [Nightingale, 2005].
Though heavily demanding (in space or time, depending on
the technique employed), this is still feasible for small, ex-
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Figure 1: Running time comparison over the “Strategic Company”
family (Example 1, Section 2). The x axis gives the number of com-
panies in the set. We compare QeCode with state-of-the-art QBF
solvers, and the QBF formulation with the QBF+ one.

plicitly defined table constraints. Yet no viable solution ex-
ists if the C1−3 are (as they usually happen to be) sets of
possibly arithmetic/global constraints. Another option is to
use the reified version of each constraint [Bordeaux, 2005].
The reified version of C(X) is an always consistent constraint
C′(X, y), where y ∈ {0, 1}, which is satisfied as C′(X, 1) if
C(X) is consistent, and as C′(X, 0) otherwise. So, we can
write ∃X.∀Y.∃a, b.C1(X)∧C′

2(X, Y, a)∧C′
3(X, Y, b)∧ (¬a∨b)

(a generalized version of such rewrite shows that QCSP+ is
still in PSPACE). Inescapable complications arise in practice,
as (i) no reified version is provided by the CSP environment
for many constraints, and (ii) the shift to the reified version
may be considerably detrimental from the solver’s viewpoint,
since reified constraints cannot prune values from domains so
long as they don’t know the value of their last parameter.

5 Implementation, Models, and Experiments
We implemented our decision procedure for QCSP+ in a sys-
tem built around the CSP solver GeCode [Schulte and Tack,
2005]. Our solver—called QeCode—accepts a wide set of
constraints in the input language3, and is publically available
from [Benedetti et al., 2006c]. At present, no other system
accepts a constraint language as expressive as QeCode does4,
and no suited public domain model exists yet.

We contribute an initial test suite by devising QCSP+ gen-
erators for the examples in Section 2. Example 1 and 2 do not
rely on non-boolean variables/constraints and have a straight
translation into QBF or QBF+. Our generators also produce
such equivalent propositional formulations. This enables us
to exercise our system against QBF solvers. It is to be noticed
that such comparison is of relative significance and biased in
favor of QBF solvers, as it does not leverage the strengths
of QeCode (e.g. non-boolean variables, propagators with a
complex semantics), while an important weakness is exposed
(i.e. data structures are not tailored to boolean reasoning).

Results are shown in Figure 1 and 2. For the “strategic
companies” case, it comes out that only one QBF solver, out

3Actually, all those (the latest version of) GeCode knows.
4Even if we eschew restricted quantifiers in the modeling.
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Figure 2: Comparison over some “Connect” games (Section 2, Example 2). The x axis gives the depth of analysis (number of moves).

of the six state-of-the-art ones we have tested5, can compete
with QeCode. This result is impressive in the light of a recent
work [Gent et al., 2006] estimating in two to three orders
of magnitude the gain (Q)CSP solvers can achieve by using
the light data structures of SAT/QBF solvers (which GeCode,
hence QeCode, are not using). To cross-check this hypothesis
of gain we modified the QBF decision procedure described
in [Benedetti, 2006] to parse and solve QBF+ specifications6:
The results—labeled “A.B. on QBF+” in Figure 1—confirm
an improvement of one/two orders of magnitude over the best
QBF solver and the base solver respectively.

The existence of strategies in board games is a combina-
torial problem with a large number of quantifier alternations
known to be hard for general purpose reasoners. For Connect
n×m-k results are quite favorable to QeCode (Figure 2, only
the two best performing QBF solvers are shown). Our models
do not include symmetry breaking or auxiliary predicates.

6 Conclusions and Future Work
Major obstacles complicate the modeling of real-world prob-
lems in purely-conjunctive quantified constraint languages,
like QCSP or QBF. The “∀-discipline” issue has been iden-
tified as the main culprit. We radically overcome such diffi-
culty by introducing the QCSP+ language, where restricted
quantifiers are allowed. This language enrichment is obtained
through a controlled integration of disjunctive operators, and
is purposely designed to facilitate the inheritance of exist-
ing solving and propagation technology: We implement the
full-fledged QCSP+ solver QeCode on top of GeCode. Inci-
dentally, QeCode (which can decide plain QCSPs as special
cases) happens to be the first QCSP solver to accept a wide
set of constraints in the input language, including global con-
straints, and one of the first to be available publically.

We devise multi-language generators to establish an initial
suite of instances with restricted quantification. Experimen-
tal comparisons against QBF solvers on some boolean models
are quite favorable. However, our main contribution lays else-
where: QCSP+ offers the formerly absent possibility to write
and solve real-world models based on quantified constraints.

We are currently working on the modeling of applicative
problems in QCSP+, and in designing decision procedures

5We also tested Quantor [Biere, 2004] and sKizzo [Benedetti,
2005] but they are not competitive on these families.

6The current implementation is limited to ∀∃ prefixes, but the
general case equally follows from the results in Section 3.

for QCSP+ and QBF+ that are not based on search.
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