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Abstract
We introduce a novel search-based decision procedure
for Quantified Boolean Formulas (QBFs), called Abstract
Branching. As opposed to standard search-based procedures,
it escapes the burdensome need for branching on both chil-
dren of every universal node in the search tree. This is
achieved by branching on existential variables only, while ad-
missible universal assignments are inferred. Running exam-
ples and experimental results are reported.

Introduction
The language of Quantified Boolean Formulas (QBFs) al-
lows us to wonder about the validity of statements like

∃a∀b∃c.(a ∨ b ∨ c) ∧ (b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b)

where we ask if a truth value (TRUE or FALSE) exists for a
such that for both truth values of b a truth value for c exists
such that the given conjunction of constraints (or clauses) is
invariably satisfied. Every problem that can be stated as a
two-player finite game can be modeled in QBF. The QBF
validity problem is itself a game between the ∃ player, who
tries to satisfy every constraint, and the ∀ player, doing his
best to contradict at least one clause. Many applications ex-
ist, like model checking for finite-state systems and confor-
mant planning (see e.g. Rintanen 1999).

QBF instances from applications come out to be unex-
pectedly difficult to solve (the surprise being engendered
by the comparatively large success of SAT solvers in re-
lated applications). Such difficulties led some to suggest
the presence of inherent deficiencies in the language (An-
sótegui, Gomes, & Selman 2005), and others to develop
solving paradigms alternative to the classical one.

Classical decision procedures search the AND/OR se-
mantic evaluation tree of the formula, looking for the ex-
istence of a suited sub-tree, called model or strategy. Alter-
native paradigms replace this search effort with a solution
process based on quantified resolution or some special kind
of skolemization (see the “Previous Work” section).

Such alternatives have been quite successfull. However,
by giving up search in favour of inference they switch from
time-intensive to memory-intensive computations. Families
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of instances exist in which even small elements systemati-
cally generate out-of-memory conditions. This has renewed
the interest in search methods, which guarantee to work in
polynomial space (once learning is properly restricted).

All the improvements to search-based procedures pub-
lished over the years share the basic scheme of (Cadoli, Gio-
vanardi, & Schaerf 1998). Namely, no one escapes the need
for searching separately both branches of every node of the
search tree associated with a universal quantifier.

In this paper, we present a novel search-based QBF de-
cision procedure, called Abstract Branching (AB). As a key
feature, it eludes the need for branching over universal vari-
ables by abstracting over their existence: AB searches at
once in the widest possible set of branches (all of them, if
possible). Ex-post, it expunges just those for which the cur-
rent solution is guaranteed not to work. As the search goes
on, a set of partial solutions is grown to satisfy more and
more branches. If (and only if) all of them happen to be
covered after an exhaustive search, the formula is TRUE.

The next section is devoted to a thorough presentation of
this idea. Then, we discuss previous work, give details on
our implementation, and comment on preliminary experi-
mental results. Some final remarks close the paper.

Notation. We consider QBFs in prenex conjunctive nor-
mal form (CNF), consisting in a prefix with alternations
of quantifiers, followed by a matrix, i.e. a conjunction of
clauses (a clause set). Given a QBF F on variables var(F ),
we denote by F̃ its matrix, and by var∃(F ) (var∀(F )) the
set of existentially (universally) quantified variables in F .
Given a clause set G and an assignment ∆ to (some of) the
variables in G, we denote by G ∗ ∆ the CNF obtained by
assigning ∆, i.e. by removing from G each literal which
is false in ∆ and each clause containing some literal true
in ∆. An empty clause (contradiction) may result, written
� ∈ G∗∆. Or, an empty formula can be obtained, in which
case ∆ is a model for G. ByM(G) we mean the set of all
the models of G. A set A ∈ 2var(F ) represent the assign-
ment where v=T if v ∈ A, and v=F otherwise.

Abstract Branching
We describe abstract branching for contrast and comparison
with the search procedure used in DPLL-like QBF solvers.
We concentrate on ∀∃-formulas exhibiting one single quan-
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Figure 1: How to decide the QBF (2) according to a clas-
sical DPLL search. Dotted paths have to be visited yet.

Figure 2: Abstract Branching’s key idea: First propose existential assignments,
then reason on universals. Solid paths represent neutralized scenarios.

tifier alternation (this restriction will be removed soon):

∀U∃E. eF (U, E) (1)

At the request of deciding the validity of (1), standard
search-based solvers select some assignment ∆ to the uni-
versal variables U , then look for a model of F̃ ∗∆ (the co-
factored matrix ). The latter step is equivalent to solve a SAT
problem. If no such model exists, the formula is declared
to be FALSE. Otherwise, some other universal assignment
is considered. The formula is claimed to be TRUE when
all the universal assignments have been considered without
ever failing to satisfy the matrix1.

Such procedure descends from the definition of validity of
a ∀∃ formula. By using the term scenario (after Chen 2004)
to mean any total assignment to the universal variables it is

Proposition 1 A formula ∀U∃E.F̃ is TRUE iff for every
scenario ∆ over U , the formula F̃ ∗∆ is satisfiable.
By choosing any arbitrary order for the universal variables,
the space of universal scenarios fits into a complete binary
tree with |U | levels and 2|U | branches, where each branch
identifies a single scenario. DPLL-like solvers visit this tree
in a depth-first manner, trying to label each leaf with the
proper satisfying assignment, so to obtain a model (some-
times also called strategy or certificate) for the formula. The
necessary and sufficient condition for the labeled tree to be
a model is that the assignment/scenario along each branch,
joined with the assignment inside the label reached via that
branch, is invariably a model for the matrix.
As an example, let us consider the following TRUE formula.
∀a∀b∀c∃d∃e.(a ∨ ¬d ∨ e) ∧ (b ∨ c ∨ e) ∧ (¬b ∨ c ∨ ¬d)∧

(a ∨ c ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬c ∨ ¬e) ∧ (¬a ∨ b ∨ d)∧
(¬c ∨ d ∨ ¬e) ∧ (¬b ∨ d ∨ e) ∧ (a ∨ ¬c ∨ d ∨ e)

(2)
The initial situation is depicted in the leftmost picture in

Figure 1, where the existential assignments we are looking
for are represented as empty labels to be filled in. Sup-
pose the scenario we visit is {a=T, b=T, c=T} (uppermost
branch). The leaf we reach corresponds to the formula

F ∗ {a=T, b=T, c=T} = (¬e) ∧ (d ∨ ¬e) ∧ (d ∨ e)

which is satisfied by the posing {d=T, e=F}: We label
the first leaf by this assignment. We happen to succeed in

1Such worst-case behaviour is alleviated by look-back tech-
niques (e.g. conflict-directed backjumping, model caching) that
re-use information gathered from searching in previous branches.

repeating this process for every branch, so that in the end
(rightmost picture in Figure 1) we know that (2) is TRUE.

Abstract Branching: The intuition
Abstract branching entirely reverses the classical search per-
spective, in favor of this one: First, guess some (total) as-
signment Γ to the existential variables. Then, ask: Which
scenarios this existential assignment is “good” for? I.e.: to
which leaves in the tree we can safely attach the label Γ?

The answer is: to all the leaves reached by universal as-
signments (scenarios) ∆ such that F ∗ ∆ is satisfied by Γ,
i.e. all the branches associated with models of F ∗ Γ. This
solution strategy descends from a definition of validity alter-
native (but equivalent) to the one given in Proposition 1.

Proposition 2 A formula ∀U∃E.F̃ is TRUE iff a set A of
assignments to the existential variables E exists such that
∪α∈AM(F̃ ∗ α) contains every scenario over U .
Let us consider again the QBF (2). This time, we ignore
universal variables and pick some assignment to var∃(F ) =
{d, e}, for example Γ = {d=F, e=T}. How do we decide
where to attach this label? We observe that the formula

F ∗ {d=F, e=T} = (a ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬a ∨ b) ∧ (¬c) (3)

by construction only mentions universal variables, so that
each time we assign a, b, and c to satisfy (3) we identify
some scenario where Γ is the (or at least is one) right label.

In our example, the models of (3) are {a=F, b=T, c=F},
{a=F, b=F, c=F} and {a=F, b=F, c=T}. This information
allows us to move the first step in Figure 2.

Let us call neutralized those scenarios for which we have
a valid label (solid lines in Figure 2). Once recognized, neu-
tralized scenarios need no further consideration in our at-
tempt to discover a model, as by construction assignments
along neutralized paths cannot lead to a contradiction.

Suppose the next existential assignment we pick is Γ′ =
{d=T, e=T}. This time we ask: Which paths among the
not-yet-neutralized ones Γ′ is good for? The answer is com-
puted as before. It is depicted in Figure 2 (second step).

The set of neutralized scenarios keeps on enlarging mono-
tonically. By using any systematic procedure for generating
existential candidates we are guaranteed to encounter only
one out of two possible outcomes: Either each scenario is
eventually neutralized (the formula is TRUE by Proposition
2), or we run out of existential candidates before such con-
dition is met (the formula is FALSE by Proposition 2). In



our working example, it suffices to consider one more ex-
istential candidate, namely {d=T, e=F} to neutralize every
scenario: The formula is TRUE (last step in Figure 2).

Some details need to be filled out before any realistic al-
gorithm emerges out of the search strategy just sketched. Let
us just briefly outline the plan of exposition.
Backtrack search. DPLL-like algorithms grow total as-

signments out of partial ones, within a backtrack-based
search procedure. Also, they don’t wait for assignments
to be total before reasoning about them. Key properties—
such as being sufficient to satisfy the matrix, or to contra-
dict some clause—are checked on the partially specified
candidate. Does this apply to abstract branching?
The answer—made formal in the next section—comes
from the following analysis. We cannot tell scenarios neu-
tralized by some candidate Γ from non-neutralized ones
until F ∗Γ “loses” every existential variable, which might
not happen until Γ is total. Still, if we build Γ step by step
we can realize that some scenarios will never be neutral-
ized by any extension of the current partial candidate. Let
us consider again the QBF (2). We start with the partial
assignment Γ = {d=F}, so to obtain F ∗ Γ = F ′, with
F ′ = (b∨c∨e)∧(¬a∨¬c∨¬e)∧(¬a∨b)∧(¬c∨¬e)∧(¬b∨¬e)

We isolate the maximal subset F ′
∀ ⊆ F ′ in which exis-

tential variables are no longer mentioned. In our case, it
is F ′

∀ = (¬a ∨ b). This set has two essential properties:
1. It excludes the possibility to neutralize every scenario

inconsistent with F ′
∀ itself. No superset of Γ can be

used to label branches identified by non-models of F ′
∀.

2. F ′
∀ is contained not only in F ′, but in any co-factored

matrix F ∗ Γ′ we obtain by extending Γ to Γ′ ⊇ Γ.
So, whatever the presence of F ′

∀ is excluding, it stays
excluded from every candidate specializing Γ.

This observation leads us to design a least-commitment
optimistic search procedure. It starts by considering ev-
ery scenario as neutralizable, so long as no evidence ex-
ists of the contrary. As existential candidates grow, they
cut away some scenarios from the set of those we can neu-
tralize. If such set becomes empty, the current existential
candidate has no extension leading to a valid label. Hence,
we backtrack. Otherwise, we obtain the empty matrix,
and accumulate neutralized scenarios in an enlarging set.

Multiple alternations. The abstract branching technique is
quite intuitive for the simple ∀∃ case. It generalizes nicely
to solve general QBFs with any number of quantifier al-
ternations. Before we address the problem in the full gen-
erality, we need to develop some formal notions. This will
be done in the Section “Formalization”.

Forward Inferences. QBF and SAT solvers to carry out
fast forward inferences by performing unit clause propa-
gation after each branching step. The abstract-branching
framework preserves the power of forward reasoning, as
shown in the “Forward Reasoning” section.

Data Structures. Solvers for quantified formulas rely on
tailored, well-engineered data structures. The objects we
manipulate blend clause sets with sets of scenarios (sub-
sets of a powerset). We sort out an appropriate solution
from the literature in the “Data Structures” section.

Formalization
Definition 1 (Quantification Structure) Given a finite set
of propositional symbols V , a quantification structure (QS)
over V is a quadruple 〈V∃, V∀, δ, dom〉 where V∃ and V∀
are a partition of V (V∃ ∪ V∀ = V and V∃ ∩ V∀ = ∅),
δ : V∃ → [0, 1, . . . , |V∀|] and dom : V∃ → 2V∀ are two
functions such that δ(x) ≤ δ(y) =⇒ dom(x) ⊆ dom(y).

A quantification structure is used to capture all the relevant
information about how universal and existential variables re-
late to one another in a closed quantified formula. The in-
tuition is that a variable e ∈ V∃ is at depth δ(e) when it
is dominated (i.e. preceded in the left-to-right prefix order)
by δ(e) different universal scopes, which together define a
dom-inating subset dom(e) for e.

The functions δ(·) and dom(·) in a quantification struc-
ture 〈V∃, V∀, δ, dom〉 are extended to any clause set G with
var(G) ⊆ V∃ ∪ V∀, as δ(G) .= minv∈var(G)∩V∃ δ(v) and
dom(G) .= dom(δ(G)) respectively. The intuition is that
formulas are treated as if they were their shallowest existen-
tial variable (i.e. the more external one in their prefix).

Definition 2 (Abstract Formula) An abstract formula (AF)
defined over the QS 〈V∃, V∀, δ, dom〉 is a couple 〈U , F 〉
where F is a clause set, var(F )⊆ V∃∪V∀, and U ⊆ 2dom(F ).

Abstract formulas can be seen as a generalization of
QBFs. The validity of a QBF requires the existence of a
tree of satisfying assignments shaped after the prefix. Con-
versely, in the AF 〈U , F 〉 we are only interested in the va-
lidity of the set of QBFs with matrixes {F ∗ ∆,∆ ∈ U}
where U represents some subset of all the possible truth as-
signments to the variables in dom(F ).

Definition 3 (Association with QBFs) The QS associated
with a QBF F = Q0V0 . . . QnVn.F̃ is defined by V∃ =
var∃(F ) , V∀ = var∀(F ), δ(v) = bi/2c if v ∈ Vi ∩ V∃,
and dom(v) = {w ∈ Vi|Qi = ∀, v ∈ Vj , 0 ≤ i < j}. The
AF associated with the QBF F is defined over the quantifi-
cation structure associated with F as 〈2dom( eF ), F̃ 〉 .

For example, the QS associated with ∀a∀b∃c∀d∃e∃f.

M̃(a, b, c, d, e, f) is defined by V∃ = {c, e, f}, V∀ =
{a, b, d}, δ(c) = 1, δ(e) = δ(f) = 2, dom(c) = {a, b},
and dom(e) = dom(f) = {a, b, d}. The AF for the same
QBF is 〈{∅, {a}, {b}, {ab}}, M̃(a, b, c, d, e)〉.

Given a QS 〈V∃, V∀, δ, dom〉 and a clause set G with
var(G) ⊆ V∃ ∪ V∀, we denote by G∀ ⊆ G the maximal
subset of G such that var(G∀) ⊆ V∀, and by G∀∃ its com-
plement to G. Essentially, G∀∪G∀∃ is a partition of G which
separates clauses only mentioning universal variables (G∀)
from those also mentioning existential variables (G∀∃).

Definition 4 (Abstract Star Operator) Given an abstract
formula 〈U , F 〉 and a literal l with δ(l) = δ(F ), we define
〈U , F 〉 ∗ l

.= 〈U ′, F ′〉 where F ′ = (F ∗ l)∀∃ and U ′ = {u ∈
2dom(F ′) such that u ∩ dom(F ) ∈ U , and � /∈ (F ∗ l)∀}
The intuition is that the abstract star operator assigns a truth
value to some variable e in the “outermost” existential scope
of an AF (by the condition δ(l) = δ(F )) abstracting over the



existence of unassigned universal variables to the left of e.
As a result, it produces a simpler abstract formula 〈U ′, F ′〉
that no longer mentions the variable e in F ′, and whose set of
universal scenarios U ′ has been properly shrunk to exclude
cases inconsistent with the assignment over e. Also, U ′ is
extended to belong to a wider space than U’s one, if δ(F ′) >

δ(F ). Indeed, U ′ ⊆ 2dom(F ′) and dom(F ) ⊆ dom(F ′).
Let us denote by N↓∀A the universal projection of N ⊆

2B over A ⊆ B, defined as N ↓∀ A = {x ∈ 2A|∀y ∈
2B\A.x ∪ y ∈ N}. The set x ∈ 2A belongs to N↓∀A only
if we find in N every set obtained by extending x with zero
or more elements from B \A. We give semantics to abstract
formulas through the concept of neutralized scenarios.

Definition 5 (Neutralized Set) The neutralized set associ-
ated with the AF 〈U , F 〉, written NEUTR(〈U , F 〉), is a subset
of U inductively defined as follows:

1. if � ∈ F , then NEUTR(〈U , F 〉) = ∅
2. if F = ∅, then NEUTR(〈U , F 〉) = U
3. otherwise, NEUTR(〈U , F 〉) = N ↓∀dom(F ), where N =

NEUTR(〈U , F 〉 ∗ v) ∪ NEUTR(〈U , F 〉 ∗ ¬v), and v ∈ V∃
is any variable such that δ(v) = δ(F ).

We call fully neutralized any AF with NEUTR(〈U , F 〉) = U .

Notice that all the definitions given so far are for general
QBFs (not just ∀∃ alternation), and that the universal pro-
jection operator takes care of multiple alternations. It plays
no role in ∀∃ formulas (where the dom(.) function by defi-
nition always evaluates to the same powerset), but is the key
to joining neutralized sets from higher universal depths. In-
deed, suppose that a subset U+ ⊆ U of F = 〈U , F 〉 is neu-
tralized in F+ = 〈U , F 〉∗e, while U− ⊆ U is neutralized in
F− = 〈U , F 〉∗¬e. So long as δ(F) = δ(F+) = δ(F−) we
simply join these two sets: They complement each other in
their ability to neturalize scenarios. But, if δ(F) < δ(F+)
and/or δ(F) < δ(F−) (i.e. we have assigned the last ex-
istential variable in the present scope so the next one lay at
a higher alternation depth), we can accept the joint neutral-
ization effort of the two sub-instances with respect to those
cases only that are completely neutralized in dom(F ). This
amounts to cut away via the projection operators all the sce-
narios that have been only partially (or not at all) neutralized.

Theorem 1 The QBF F is TRUE iff the abstract formula
associated with F is fully neutralized.

A neutralized-set computation procedure built after Defini-
tion 5 is given in Algorithm 1 (the explanation of Line 1 is
deferred until the next section). It can be used as a decision
procedure for the QBF F by calling it on the abstract for-
mula associated with F by Definition 3. Such invocation is
meant to check whether the input formula is fully neutral-
ized (which happens iff the algorithm returns 2dom( eF )). By
Theorem 1 this answers the validity problem over F in a
sound and complete way. Figure 3 illustrates a sample run
of the algorithm.

Exploiting forward inferences
Let us call ∃-unit clause a clause mentioning exactly one
existential literal. We may think of a unit clause C = {l} in
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Figure 3: AB solves the QBF (2). The first component of
each AFs is depicted, the second is the original formula in
A, the empty formula in C1−4, the clause set (b ∨ c ∨ e) ∧
(¬a ∨ ¬c ∨ ¬e) ∧ (¬c ∨ ¬e) ∧ (¬b ∨ e) ∧ (a ∨ ¬c ∨ e) in B1,
and (a∨ e)∧ (b∨ c∨ e)∧ (a∨ c∨¬e)∧ (¬a∨¬c∨¬e) in B2.

some CNF formula F as a clause such that � ∈ F ∗ ¬l (i.e.
a literal whose negation causes an immediate contradiction).
By analogy, we give the following definition.

Definition 6 (Abstract Unit Clause) An ∃-unit clause C ∈
F with existential literal l is a partial unit clause for the ab-
stract formula 〈U , F 〉, U 6= ∅, with 〈U , F 〉 ∗ ¬l = 〈U ′, F ′〉
if U ′ ⊂ U . It is a total unit clause if, in addition, U ′ = ∅.
The algorithmic intuition is that an abstract (partial) unit
clause identifies “bad” branching choices that immediately
contract the neutralizable set. If we contradict a total unit,
such set becomes suddenly empty, and the procedure has to
backtrack. We don’t need to wait until we encounter the
empty set: We foresee by forward inference that a total unit
is a necessary consequence given the current state of the
search, and just propagate this information.

Definition 7 (Abstract unit clause propagation) The ab-
stract formula F ′ obtained via abstract unit clause propa-



Algorithm 1: absBranching
input : An abstract formula 〈U , F 〉
output: A subset of 2dom(F )

1 〈U , F 〉 ← AUCP (〈U , F 〉);
2 if � ∈ F then

// No hope to neutralize further scenarios
3 return ∅;
4 else if F is empty then

// Fully neutralized subformula
5 return U ;

else
// Inductive case: branch over two sub-problems

6 e← one variable in V∃ with δ(F ) = δ(e);
7 U+ ← absBranching(〈U , F 〉 ∗ {e=T});
8 U− ← absBranching(〈U , F 〉 ∗ {e=F});
9 return (U+ ∪ U−)↓∀dom(F );

gation (AUCP) from the abstract formula F , written F ′ =
AUCP(F), is defined as AUCP(F) = AUCP(F ∗ l) if l is
the unique existential literal of some total unit clause in F ,
and as AUCP(F) = F if no such clause exists or � ∈ F .

Abstract unit propagation prevents us from exploring sub-
spaces where no scenario can be neutralized, so we state

Property 1 For every abstract formula F , AUCP(F) is
fully neutralized iff F is fully neutralized.

This property justifies line 1 in the pseudo-code. To rec-
ognize total unit clauses it suffices to keep on watching ∃-
unit clauses, and check whether the scenarios they would cut
away if contradicted are covering the whole working set. If
so, they are total unit by Definition 6 and can be propagated.
For example, three ∃-unit clauses on e are present after the
first step in Figure 3: ¬b∨e, a∨¬c∨e, and b∨c∨e. It is easy
to see that—if contradicted on e—these clauses would prune
every scenario where either b=T or a=F, thus cancelling the
whole working set as depicted after Step 1. So, we propagate
e=T by AUCP and jump after Step 3 straightaway.

Data Structures
Algorithm 1 manipulates AFs, i.e. couples made up of a set
of scenarios and of a set of clauses. The former element of
the couple undergoes join, intersection and projection oper-
ations (lines 7-9), the latter is subject to a slight variation
over subsumption/resolution transformations (lines 7,8).
• Sets of scenarios are represented via reduced ordered

binary decision diagrams (Bryant 1986) (ROBDDs, or
just BDDs). Such representation may be exponentially
more succinct than explicit ones, like the trees used
so far (Wegener 2000). The BDD way of representing
subsets of a powerest 2S is to associate an if-then-else de-
cision variable with each element in S, then to construct
a directed acyclic graph representing the characteristic
function of the subset. A path in the diagram leading
to the sink node "1” represents the subsets containing
(resp. missing) all the elements associated with a then-
decision (resp. else-decision), while the presence of other
elements is not constrained. In our case, decision vari-
ables are associated one-to-one with universal variables.

c

1

a

b

0

For example, the BDD aside represents the
universal scenarios we observe after Step 3 in
Figure 3: Solid (dashed) arrows denote then-
branches (else-branches). The decision order
is c, b, a. BDDs are ideally suited to repre-
senting broad scenarios: The initial one, that
takes into account every assignment, is repre-
sented by a tiny BDD with no decision node
and only one then-arc heading for the 1 sink.

In reduced/ordered diagrams all paths encounter variables
in the same order, and no two nodes represent the same
set (each one has a canonic representation). This allows
for information sharing among abstract formulas at
different stack depths in Algorithm 1. The operations
on sets we need (conjunction, projection, etc.) can be
performed efficiently on the involved BDDs.

• Clause set representation is based on lazy data struc-
tures (Zhang 1997), in the QBF-specific version of (Gent
et al. 2004). We designed a variant of the latter which
addresses two additional issues:
– Clauses with universal literals only have to be immedi-

ately recognized and removed, according to Def. 4.
– Unit clases that are not total have to be taken on a

watched list of partial unit clauses, where they wait to
possibly become total as a side effect of a contraction
of the working scenario, according to Def. 6.

Relation to Previous Work
Search-based QBF solvers are based on the seminal pa-
per (Cadoli, Giovanardi, & Schaerf 1998), where trivial
truth/falsity tests, monotone literals and forced assignments
rules are introduced as well. Major enhancements have
been (1) learning/caching of (in)validity search outcomes for
sub-formulas (Letz 2002; Giunchiglia, Narizzano, & Tac-
chella 2002; Zhang & Malik 2002), (2) lazy data structures
(Giunchiglia, Narizzano, & Tacchella 2001), and (3) par-
tial unfolding and quantifier inversion (Rintanen 2001). Re-
cently, a data-structure level integration between a search-
based QBF procedure and a SAT solver, called “S-QBF”
has been shown to improve the state of the art on some
families (Samulowitz & Bacchus 2005). In another recent
work (Remshagen & Truemper 2005) a specialized search-
based algorithm (only working on the “Q-ALL” class of for-
mulas) was shown to outperform other approaches. Some
strong solvers not based on search emerged in the last years.
We mention Quantor (Biere 2004), QMRES (Pan & Vardi
2004), and sKizzo (Benedetti 2005), and refer the reader
to (Benedetti 2004) for a thorough discussion.

As opposed to these “alternative” approaches, AB is still
based on searching the space of assignments, but we avoid
branching on universal variables: Admissible values for uni-
versals are inferred. AB guarantees by construction to gen-
erate each existential assignment at most once, while usual
procedures may be redundant in this respect. Furthermore,
on instances with a universal outermost scope AB is able
to provide a natural measure of advancement during long
runs: the percentage of scenarios already neutralized. Also,
if such instances are unsatisfiable, all the non-neutralized
branches are eventually computed (instead of just one).
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Figure 4: AB performance on ∀∃ families. The x axis gives runtime (sec) for AB, the y axis for the others. Timeout is 1000s.

Implementation and Experimentation
We implemented AB within our existing solver sKizzo,
downloadable from (Benedetti 2006). As a preliminary ex-
perimental evaluation we compare AB with state-of-the-art
solvers (including sKizzo itself as it was before the inclusion
of AB) on all the families in the QBFLIB with ∀∃ alternation
(mutex, shifter, robots, tree, game, totaling to 192 instances).
AB solved 91.7% of the test-set in 1000s, followed by
QuBE (87.0%), sKizzo (85.4%), semprop (84.9%), yquaffle
(84.9%), and Quantor (78.1%). Seven instances were solved
by one solver only, six of which by AB. The runtime distri-
bution (Figure 4) is quite favorable to AB for the first four
families. It is more scattered for the last family (game): AB
comes out to be highly complementary to other approaches,
i.e. it solves quickly instances difficult for the others, and
vice-versa. Indeed, while no solver (and no combination of
solvers missing AB) manages to complete the whole family,
any solver running in parallel with AB easily decides it all.
For example, while both AB and sKizzo encounter instances
requiring hundreds of seconds and they sometimes timeout,

Instance S-QBF Quaffle QuBE Quantor sKizzo A. B.

game20_20_40_2 440.94 — 98.26 0.08 — 1.52
game20_25_25_1 309.46 — 369.50 — — 0.03
game20_25_25_2 125.29 — 2874.96 — — 0.01
game20_25_25_3 40.06 — 1150.51 — — 0.02
game20_25_25_4 222.13 — 1651.43 — — 4.15
game20_25_50_1 221.74 — 1657.63 — — 4.16
game50_25_25_1 64.22 — 1869.70 — — 0.02
game50_25_25_3 4.13 — — — — 0.02
game50_25_25_4 1.63 — 51.48 — — 0.02
game100_25_25_2 0.73 — — 9.26 0.07 0.01
game100_25_25_3 0.63 4.06 — 0.04 0.02 0.01
game150_25_25_1 0.00 0.00 — 0.01 0.01 0.00
game150_25_25_2 4.22 4.34 — 0.01 0.02 0.00
game150_25_25_4 0.30 208.79 — 0.01 0.01 0.00
robots1_5_2_72.7 221.70 19.64 1385.68 — — 3.22
robots1_5_2_42.7 672.14 288.06 565.01 — — 106.82
robots1_5_2_61.6 268.29 99.34 424.87 — — 21.90

Table 1: Results obtained on some difficult instances. All the columns but the last
two are taken from (Samulowitz & Bacchus 2005), where they exemplify cases dif-
ficult for search-based solvers and unsolvable by others. A comparable experimental
setting is used for sKizzo/AB. “−” is time/mem-out (5000s/3Gb).

their parallel version completely decides the game family in
24.68s, with an average time per instance of 0.17s and a
2.99s worst case. Table 1 exemplifies some improvements
over the state of the art.

Conclusions and Future Work
We introduced a new algorithm for deciding QBFs which
radically departs from previous approaches. In a first ba-
sic implementation it is already improving the state of the
art on some families. As a future work, we plan to elude
yet another of QBF solvers’ weaknesses, i.e. the need for
branching according to the left-to-right order of scopes.
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