
Istituto per la Ricerca Scientifica e Tecnologica (IRST)
Via Sommarive 18, 38055 Povo, Trento, Italy

Technical Report - TR 04-11-03(v0.8)

sKizzo
a QBF decision procedure based on

Propositional Skolemization and Symbolic Reasoning

Marco Benedetti§

benedetti@itc.it

November 11, 2004

§ This work was supported by PAT (Provincia Autonoma di Trento, Italy), under grant n.
3248/2003.

Abstract

We introduce a novel algorithm for the evaluation ofquantified boolean
formulas(QBFs), which we callsKizzo. Our work is firstly framed in the broad
field of algorithms for automated deduction. Then, we enlighten the strong
application-related interest in decision procedures for QBFs.

The algorithm itself is thoroughly discussed. It integrates within a uniform
framework several different ideas and techniques: classical resolution-based
QBF reasoning, algorithms for structure reconstruction, propositional skolem-
ization, BDD-based representations, symbolic reasoning, search-based deci-
sion procedures, compilation to SAT techniques, and more. A detailed account
of each module in the solver is presented, together with the overall architecture
explaining how they interact with one another.

We also report of our first implementation for the algorithm. It was used to
experimentally evaluate our approach, yielding very interesting results. The re-
lated literature is carefully reviewed, aiming to point out the many distinguish-
ing features ofsKizzo. Finally, a large section is devoted to the presentation of
our ongoing efforts and future work on the topic.

Table of Contents

1 Introduction . 4
2 Overview . 5

2.1 Quantified Boolean Formulas . 5
2.2 Solving QBFs . 6
2.3 Classical Decision Strategies . 7
2.4 sKizzo at a glance . 8
2.5 Notation . 10

3 The algorithm . 11
3.1 Step 1: QBF Normalization . 11
3.2 Step 2: Syntax-tree Reconstruction . 12
3.3 Step 3: Symbolic Skolemization . 15
3.4 Step 4: Symbolic Normalization . 22
3.5 Step 5: Symbolic Divide-et-Impera . 29
3.6 Step 6: Groundization . 31

4 Implementation and experimentation . 32
4.1 Implementation . 32
4.2 Benchmarks and solvers . 35
4.3 Functional results . 36
4.4 Performance . 41

5 Related and future work . 47
5.1 Related work . 47
5.2 Discussion . 50
5.3 Future work . 53

6 Conclusions . 57

Acknowledgements . 57

Bibliography . 57

1 Introduction

Many application problems (Planning, Scheduling, Formal Verification, and more) can
be successfully tackled by stating them in some formal language featuring an inference
apparatus (i.e., alogic). Thereafter, they are solved by means of an automated-reasoning
tool able to manage statements in the chosen language.

This language should be expressive enough to capture the scenario of interest. For
example, if one needs to predicate about time-dependent properties, he or she would
better use a logic containing time-related operators. But there is another crucial issue to
take into account while choosing the target logic: As far as applications are concerned,
theefficacyof the known decision procedures is of primary importance.

Should a deduction engine for a certain logic come out to be incredibly effective
with respect to the average case, it would probably become attractive for many applica-
tions. Even if the underlying logic is not expressive enough for the problem at hand, it
is still possible to re-write a somehow restricted version of the problem, or to retain the
whole meaning of the problem at the expense of a (possibly huge) enlargement in the
size of each instance (also suffering from a remarkable obfuscation).

From a theoretical point of view, properties of most commonly used logics are well
known. For example, first-order logic (FOL) is known to be semidecidable, while
propositional logic (PROP) is a simpler decidable logic in which the satisfiability
problem is NP-complete; quantified propositional logic (QBF) and linear propositional
temporal logics (PLTL) are PSPACE, and so on. However, what does really matter to
applications is the average case, i.e. the capability of a reasoning engine to effectively
solve those problems that arise in practice. As we move from a more expressive to a less
expressive formalism, we may improve the worst-case complexity, but we also loose the
expressive power of certain syntactic operators that not only provide a more natural way
to state relevant facts or rules, but could also be effectively exploited during the solving
process, at least in principle. In general, the actual balance between these pros and cons
is unclear.

As a matter of fact, the most effective solving tools for a large class of industrial-
scale problems [21] (such as computer-aided design of integrated circuits [39, 42], Plan-
ning [38], Model Checking for dynamic systems [10], Scheduling [23], Operations Re-
search, and Cryptography [50], to name a few) areSAT solvers, which are reasoning
engines designed to decide the existence of models forPROP instances.

One step ahead of propositional logic, we encounter the more expressivequantified
propositional logic, which adds the valuable possibility toquantifyover the truth value
of variables. Most of the industrial-made problems reported above have a more natural
QBF formulation, which is—in addition—possibly exponentially more succinct than
the propositional one. Compelling questions arise:Are QBF solving tools worthy of this
inheritance?Do they add any value to the reasoning capabilities of purely propositional
solvers?

The answer is:no. Or, at least,not yet. QBF logic is a promising formalism still in need
for substantial improvements as to satisfiability procedures. A lot of research efforts

4

are currently focusing on designing new solving paradigms to capture the added value
of quantified reasoning. In this work, we contribute to such research with several new
ideas, and with a novel decision procedure, calledsKizzo1.
From an historical perspective, the approach we propose acts like a glue that joins to-
gether techniques developed over decades in the framework of automated reasoning.
The first and most important component of our construction traces back to the Twenties
(the Skolem theorem [71, 15]). Following the timeline, we capitalize on some semi-
nal contributions to automated theorem proving from the early Sixties (DPLL algo-
rithms [24, 25]). Then, a compact formalism from the Eighties to reason about boolean
functions [12, 76] is employed. The Nineties gave us key contributions towards effec-
tive quantified reasoning [16, 40]. In the same years, successful techniques to compile
real-world problems into SAT instances were proposed [38, 42, 10]. We adapt such tech-
niques to our case. Finally, symbolic representations for propositional problems gained
attention in the last few years [17, 53, 57], and are largely exercised here.

Our approach exploits all these techniques within a coherent framework, bysym-
bolically reasoningon thecompact representationof thepropositional expansionof the
skolemized problem, resorting to ground,SAT-based propositional reasoningwhenever
it pays back. Over and above building on top of existing contributions—and purposely
to leverage all of them at once—our work essentially introduces a new way of looking
at quantified boolean reasoning (see Section 5.2).

The rest of the paper is organized as follows. Section 2 introduces QBFs, presents the
foundamental decision strategies employed in QBF solvers, and gives a first overview
of our algorithm. A more detailed description of the solver is presented in Section 3,
together with exemplifications over small formulas. Section 4 is concerned with imple-
mentation and experimentation. The current version of the solver is presented, bench-
mark suites used for the evaluation are discussed, statistical results over real-world in-
stances and a preliminary performance evaluation are reported. The related literature is
discussed in Section 5, wheresKizzo is also compared with other existing solvers. Fu-
ture research directions are presented. Section 6 closes the paper with a few concluding
remarks.

2 Overview

2.1 Quantified Boolean Formulas

We consider quantified boolean formulas inprenex conjunctive normal form, such us,
for example, this one:

∃a∀b∃c (a ∨ b ∨ ¬c) ∧ (b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c) (1)

which is comprised of theprefix “∃a∀b∃c” followed by thematrix “(a ∨ b ∨ ¬c) ∧
(b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)” which is aconjunctive normal form(CNF)

1 Arbitrarily shortened form ofskolemizzo, which is an Italian word meaning “I apply skolem-
ization”.

5

formula, i.e. a propositional formula made up by conjuncting clauses, each clause being
a disjunction of literals (a variable or a negated variable). More in general, we consider
formulas in the form

Q1V1Q2V2 . . .QnVn F

where the matrixF is a CNF propositional formula on variablesvar(F), and the prefix
Q1V1Q2V2 . . .QnVn is such thatQi ∈ {∀,∃}, i = 1, . . . , n andQi 6= Qi+1, i =
1, . . . , n−1, while{Vi} is a partition ofvar(F) (i.e.:∪n

i=1Vi = var(F) andVi∩Vj = ∅
for i 6= j). We suppose that eachVi is non-empty.

EachVi is calledscope. A scopeVi is existential(universal) if Qi = ∃ (Qi = ∀).
The scopeσ(v) of a variable is the indexi such thatv ∈ Vi. The scopeσ(Γ) of a clause
Γ is the maximal scope of its variables. Variablesv ∈ Vi are said to be existentially
(universally) quantified ifQi = ∃ (Qi = ∀). The set of existentially (universally)
quantified variables inf is denoted byvar∃(f) (var∀(f), respectively).

2.2 Solving QBFs

To solve(equivalently: toevaluate, or todecide) a QBF amounts to determine its truth
value, according to a semantics which we give intuitively for the sample formula (1).
That formula is solved by answeringtrue or falseto the question: “Does a truth value
for a exist such that for both possible truth values forb a truth value forc exists such
that the matrix(a ∨ b ∨ ¬c)(b ∨ c)(a ∨ ¬b ∨ c)(¬a ∨ ¬b ∨ ¬c) evaluates totrue?” (the
notion of evaluation for the matrix is the standard one for propositional logic).

A formula is said to besatisfiableif the answer to the above question is “yes”,
unsatisfiableotherwise. Each satisfiable formula has at least onemodel, i.e. a way of
deciding the truth value of every existential variable as a function of all the universal
variables with lower scope, in such a way that the matrix evaluates totrue whichever
the values of those universal variables. Thus, a model is a collection of boolean func-
tions, one for each existential variable, meant to represent the way existential variables
have to depend on the preceding universal variables (w.r.t. the order in the prefix) to
guarantee an always satisfied matrix. Such a set of functions has a natural, tree-shaped
representation, which is represented in the left side of Figure 1 for the sample case (1).
Nodes labeled by universal variables have two child subtrees, one for each truth value,
and a assignment satisfying the matrix is encountered along each path to a leaf.

QBF solversare algorithms designed to tell formulas having at least one model from
those having none. For example, a QBF solver can be engaged to decide that (1) is
indeed satisfiable, whereas the statement

∃a∀b∃c (a ∨ b ∨ c) ∧ (b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b) (2)

has no model (it isunsatisfiable).
Unfortunately, QBFs arising from the applications mentioned in the introduction

are not as small as shown in these examples. They may indeed contain tens of quantifier
alternations, thousands of variables, and millions of clauses.

6

a=T

b

c=Tc=F

T F

(a∨b∨c)(b∨¬c)(a∨¬b∨¬c)(¬a∨b)

a=T a=F

(b∨¬c)(b)

(¬c) (c)(¬c)

b=T b=F b=T b=F

c=T c=T c=Fc=F

TT

T T T T

(b∨c)(b∨¬c)(¬b∨¬c)

Fig. 1.On the left: A model for the satisfiable instance (1); On the right: The semantic evaluation
tree of the unsatisfiable instance (2)

2.3 Classical Decision Strategies

Two classical strategies exist to decide QBF formulas.

Search. The prefix is dealt with in a left-to-right way. The order of the variables in the
prefix is respected along each branch of thesemantic evaluation treefor the for-
mula, which is the and/or tree depicted in the right side of Figure 1 for the sample
case of (2). The root is labeled by the original matrix, while the formula attached
at one node is obtained from the formula labeling its father node by assigning one
propositional variable. Leaves are labeled by either the empty formula> (mean-
ing that the assignment from the root to the current leaf satisfy the original matrix)
or the empty clause⊥ (the assignment contradicts the formula). According to the
semantics of quantifiers, an existential variable generates anor node that disjunc-
tively split each branch, while universal quantifiers are associated toandnodes that
split branches conjunctively. A model, if one exists, is a subtree with all the leaves
labeled by>, extracted by choosing only one child for each existential node, and
both children for conjunctive nodes. A search-based solver visits the evaluation tree
to determine whether such a subtree does exist. As no model can be extracted out
of the tree in the right side of Figure 1, the formula (2) is unsatisfiable.

Solve. Rather than search for a model, it is possible tosolvethe formula by applying
a refutationally complete procedure. Such strategy aims to derive necessary conse-
quences from the given formula, ending up with the empty clause if and only if the
original formula is unsatisfiable. These methods build upon generalizations of the
resolution approach for standard satisfiability, such asq-resolution[40, 13]. There
are several possible complete strategies for applying resolution. For example, we
can focus oneliminating quantifiersin a right-to-left order (w.r.t. the order in the
prefix). We get rid of existential quantifiers by q-resolution, andexpanduniversal

7

quantifiers to the two cases they represent. In the sample case of the unsatisfiable
instance (2), we would start by resolving each clause containingc against each
clause containing¬c, thus obtaining∃a∀b(a ∨ b) ∧ (¬a ∨ b) (wherec vanished).
The universal quantifierb can be eliminated by constructing the conjunction of a
copy (a′ ∨ b′) ∧ (¬a′ ∨ b′) of the matrix whereb′ has to be assigned totrue with
a different copy(a′′ ∨ b′′) ∧ (¬a′′ ∨ b′′) whereb′′ is assigned tofalse. We obtain
∃a′′(a′′) ∧ (¬a′′), which by resolution finally yields the empty clause.

QBF solvers employ one of these two strategies. However, the underlying strategy
represents only one out of several ingredients in competitive solvers, possibly not the
prominent one. Some of the many enhancements that have to be introduced to construct
an effective solver are discussed in Section 5.

2.4 sKizzo at a glance

sKizzo does not comfortably fit into either of the classical strategies we have just
reviewed (even if bothsearch-related andsolving-related elements are present in our
solver, as discussed in Section 5.2).

The key idea is torestatethe original instance as a purelyexistentialproblem (SAT)
by moving it to a different boolean space, where variables represent higher-level con-
cepts. This new space contains decision problems over the existence of a consistent set
of boolean functions representing models for the originating QBF instance (according
to what we have seen in Section 2.2).

For example, to solve the QBF instance (1) we restate the problem as follows: “Do
a constant boolean functionsa and a unary boolean functionsc(b) exist that compute
the truth values to be assigned toa and c, respectively, in such a way that the matrix
always evaluates totruewhichever the truth value chosen forb?”.

Such translation from one problem space into another is almost identical to a well-
known technique, calledskolemization. It is indeed fair to say that skolemization is at
the very heart ofsKizzo. Unfortunately, it is not enough to designate skolemization as
a core technique to profitably deal with QBFs. A lot of striking and inescapable issues
do arise in practice. Most of the algorithmssKizzo employes have been designed to
get rid of these complications. For example: (a) the prefix of a QBF formula does not
always closely reflect the dependencies between existential and universal variables; (b)
the result of a classical skolemization is neither a purely propositional formula nor even
a QBF formula; (c) if we cast a skolemized instance into a purely propositional shape,
we obtain such a huge instance that not only a direct solution is impractical, but an ex-
plicit representation is unfeasible; (d) if we adopt a compact or symbolic representation,
we have to re-design all the classical inference rules to work on symbolic objects, as we
cannot afford raw groundization nor even for intermediate results; (e) complete deci-
sion procedures may be inefficient in the symbolic framework, so we may be forced—
sooner or later—to resort to a search-based complete algorithm; (f) the combinatorial
core coming out of all the preceding steps is best dealt with by a state-of-the-art SAT
solver, which we have to properly involve in the solving process.

8

QBF

normalization

Symbolic

skolemization

Symbolic

divide-et-impera

Symbolic

normalization

Syntax tree

reconstruction

Groundization

QBF
 instance

SAT / UNSAT

 K
s i z z o 2 1

3 4 5 6

Fig. 2.High level view ofsKizzo’s internals

sKizzo has been designed to solve all the above problems. Figure 2 represents a sim-
plified waterfall model for the algorithm, which is made up of six steps. The data and
control flow is almost one-way, as each module takes its input form the previous step
and produces an output used by subsequent steps. The major exception is Step 5, which
may resort back to Step 4. The architectural model we adopt effectively decomposes
relevant atomic functionalities and clearly isolates all the key ideas. It is adopted to sim-
plify the exposition, thought it does not closely reflect the implementation presented in
Section 4. The algorithm works as follows.

Step 1. Start bynormalizing the input formula. This is just a pre-processing step which
is performed working on the original QBF representation. It consists in applying
simple inference rules (such us unit clause propagation and pure literal elimination)
up to the fixpoint. It aims to (a) anticipate the simple part of the work—that could
anyway be performed later on as the inference power of Step 1 is subsumed by the
following steps, and (2) put the formula in a normal form in which each clause has
an existential scope as required by subsequent steps. See Section 3.1.

Step 2. Extract a tree-shaped syntactic structureout of the flat conjunctive normal
form coming from Step 1. The prefix of our QBF formula specifies a linearly
shaped syntactic tree. This tree is responsible for conveying a relevant part of the
semantics of a formula, namely, it says which existential variables are in the scope
of which universal variables. Semantically equivalent trees may exists that are no
longer linear, thus more closely reflecting the intrinsic dependencies in the matrix.
See Section 3.2.

Step 3. Produce asymbolic representationof the propositional versionof the skolem
translationof the structured formula coming out of Step 2. Things seem compli-
cated, but they are not. In essence, we apply the Skolem theorem to obtain a purely

9

universal but satisfiability equivalent formula. By doing so, we introducefunction
symbolsnot belonging to the toolkit of QBF logic. To eliminate such functions, we
expand their propositional meaning over each point of their definition domains. As
a side effect, our purely universal instance becomes a purely existential one, i.e. a
SAT instance. Unfortunately, this instance is possibly exponentially larger than the
original QBF formula. In practice, it is intractable, unless some kind of compact
representation is employed. That is exactly what we do, by means of a two-level
symbolic representation. See Section 3.3.

Step 4. Try to solve (or, at least, to strongly simplify) the symbolically-represented,
purely propositional instance coming out of Step 3. To perform this work, apply
up to the fixpoint a set of inference rules that manage symbolic objects to produce
symbolic inferences, thus never expanding the formula to its ground meaning. See
Section 3.4.

Step 5. If Step 4 is unable to solve the problem (as it enrolls a refutationally incomplete
inference apparatus), start dividing the problem into smaller and simpler pieces,
until a sufficiently small sub-problem is obtained that either (a) can be directly
solved by employing the symbolic rules given in Step 4, or (2) is affordable by a
SAT solver once extended to its full,ground meaning. See Section 3.5

Step 6. Should Step 5 decide to face the ground version of some sub-problem, we
would have to produce the necessary flat propositional space, generate all the nec-
essary clauses, give the resulting instance to the SAT solver, wait for its answer,
and give the result back to Step 5. We do this in Step 6. See Section 3.6.

Some steps (namely, Step 1, 4 and 5) are able to decide specific classes of formulas.
Others just perform a kind of “pre-processing” aiming at modifying the representation
of the problem or reducing its size. They never decides anything.

2.5 Notation

We denote clauses by uppercase greek letters, and represent them either as explicit
conjunctionsΓ = l1 ∨ l2 ∨ · · · ∨ ln, or as sets of literalsΓ = {l1, . . . , ln}. Given a
clauseΓ = {l1, . . . , ln}, we denote byΓ ∗ l the result ofapplying the assignmentl to
that clause (l being a positive or negative literal). The result is that (1) the clause stays
the same ifvar(l) doesn’t appear invar(Γ), (2) the clausedisappears(is subsumed) if
l ∈ Γ , and (3) the clauseresolvesto Γ \{¬l} if ¬l ∈ Γ . This notion is readily extended
to sets of clauses and sets of literals, in so asf ∗∆ is the formula resulting after applying
the (partial) assignment∆ to each clause inf . The total orderingV1 < V2 < · · · < Vn

among scopes induces a partial ordering≺ among variables, in which eachVi is an
unordered subset of variables, andv ≺ w wheneverv ∈ Vi andw ∈ Vj for somei < j.
Given a subsetS of the variables and the partial ordering induced by the prefix, we
defineSup(S) = {v ∈ S|@v′ ∈ S.v ≺ v′}. TheSup function is extended to clauses,
in so asSup(Γ) = {v ∈ var(Γ)|@v′ ∈ var(Γ).v ≺ v′}.

We say that a variablev dominatesanother variablew iff v ≺ w (we also say that
w is deeperthanv). The universal depthδ(v) of an existential variablev ∈ Vi is the
number of dominating universal variables forv: δ(v) = |{v|v ∈ Vj , j < i,Qj = ∀}|.

10

We denote theexclusive oroperator by “⊗”. We use such operator to construct liter-
als out of variables, when the polarity of the literal depends on some binary parameter.
For example,a⊗v meansv whena = 0, and¬v whena = 1.

3 The algorithm

In this section we describe each step of our decision procedure in turn, according to
Figure 2.

3.1 Step 1: QBF Normalization

The aim of this step is to normalize and simplify the input formula.

Step 1 takes as input the original instance, and produces either a (possibly) simplified
version of that formula, or—for “simple” instances—a SAT/UNSAT decision.

A set of (easy-to-implement but incomplete) inference rules for QBF is utilized.
Each rule is repeatedly applyed, until its deductive closure is computed. Deductive clo-
sure is expanded for each rule in a round-robin way, until fixpoint. The formula is then
said to benormalizedwith respect to the set of rules employed. For classes of formulas
that are decided during this step, a SAT/UNSAT outcome is obtained and the algorithm
terminates.

A candidate set of rules is the following.

PLE (Pure Literal Elimination) selects literals that only appears positively (negatively);
if a pure literal has existential scope, it is safe to assign it to true (the standard propo-
sitional case: some clauses are satisfied, none is resolved, and we are free to select
either truth value). Conversely, this choice is too optimistic for universal pure lit-
erals. The clauses in which an universal pure literal appears should be satisfiable
even if the literal is false. So, PLE chooses the worst case.

UCP (Unit Clause Propagation) is a powerful rule that only considers clauses{γ}
made up of one single literal. If the scope of the clause is universal, the formula
is immediately unsatisfiable (γ has to be true, and, at the same time, the formula
should hold for both truth values). If the scope is existential, the literal must be
assigned (and propagated) to avoid an immediate contradiction, as in the standard
propositional case.

FAR (ForAll Reduction) is an equivalence preserving rule specific to QBF. It allows
to remove the deepest literal from each clauseΓ with universal scope (Qδ(Γ) =
∀). If the resulting clause still has universal scope, the rule is applied again. If
the empty clause is derived, the formula is unsatisfiable. Otherwise, the resulting
clause has existential scope. The intuition behind FAR is that for clauses in which
the deepest literal is universal the “worst-case” assignment is always the one that
resolves against that literal, so we cannot confide in that literal to satisfy the clause.
We simply remove it.

11

Only the FAR rule isessentialto compute the normal form required by subsequent
steps. When all the rules reach their fixpoint (and neither a contradiction is detected,
nor the instance is satisfied), the formula is passed to the subsequent steps. In particular,
each formula is supposed—from now on—to be exclusively made up of clauses with
existential scope.

3.2 Step 2: Syntax-tree Reconstruction

The aim of this step is to partly reconstruct the lost/hidden syntactic structure of the
formula, thus producing information that greatly helps subsequent steps.

Step 2 takes as input the prenex QBF formulaf produced by Step 1, and constructs a
quantifier treefor f . A quantifier treetree(f) for f is a tree-shaped structure with the
following properties:

1. The root node is labelled with an “and” connective, and may have any number of
children.

2. The internal nodes have free degree and are labeled with a (universally or exis-
tentially) quantified variable inf . Each variable inf appears somewhere in the
internal nodes oftree(f). Existentially quantified variables appears intree(f) ex-
actely once. Conversely, any two internal nodesn andn′ can be labelled with the
same universal variable, provided they do not lay on the same branch.

3. Each leaf noden is labelled with a non-empty list of clauses; the set of variables
in such clauses is always a subset of the variables encountered along the path from
the root ton; every clause inf appers somewhere among the leaves, but no clause
is reported twice or more.

4. If a variablev appears in the prefix off before a variablev′, andv andv′ have
different quantifiers, then along every branch oftree(f) that contains bothv and
v′, v′ is a successor ofv (i.e. quantifier alternation is preserved).

In general, different quantifier trees exist for the samef , the simplest one being a lin-
ear tree made up of one single branch linearly replicating the sequence of variables
in the prefix off . However, more structured trees also exist in general. To our pur-
pose, the smaller is the average universal depth for existential variables, the better the
reconstructed tree. The best trees are those minimizing the universal depth ofall the
existential variables2. We employ Algorithm 1 to construct our quantifier tree.

It is straightforward to interpret a quantifier treet as the syntactic tree of a non-prenex
quantified boolean formulaqbf(t) inductively defined as:

qbf(n) =

Γ1 ∧ ... ∧ Γn, for leaf nodes labeled by {Γ1, ..., Γn}
qbf(c1) ∧ ... ∧ qbf(cn), for the root
Qv. (qbf(c1) ∧ ... ∧ qbf(cn)) , for nodes with label(n) = v,Qσ(v) = Q

2 We call such treesminimal quantifier trees. Their existence, uniqueness, and the complexity
of their construction will be investigated elsewhere.

12

input : A prenex QBF formulaf
output: A quantifier tree forf

// First, we create the root;
r ← the root node for the tree;
label(r)← “ ∧ ”;

// Then, we create the leaves together with their lists of attached clauses;
activeNodes← ∅;
foreachv ∈ var∃(f) do

n← new node;
label(n)← v;
clauses(n)← {Γ ∈ f |v ∈ Sup(Γ)};
depends(n)← ∅;
foreachΓ ∈ clauses(n) do

foreachγ ∈ Γ do
depends(n)← depends(n) ∪ var(γ);

end
end
depends(n)← depends(n) \ {v};
f ← f \ clauses(n);
activeNodes← activeNodes ∪ {n};

end

// Finally, the rest of the tree in a bottom-up way;
while activeNodes 6= ∅ do

n← pick one variable fromSup(activeNodes);
if depends(n) = ∅ then

father ← r;
else

v ← pick one fromSup(depends(n));
if isUniversal(v) then

father ← new node;
label(father)← v;
activeNodes← activeNodes ∪ {father};
depends(father)← depends(n) \ {label(n)};

else
father ← the noden with label(n) = v ;
depends(father)← depends(father) ∪ depends(n) \ {label(n)};

end
end
father(n)← father;
activeNodes← activeNodes \ {n};

end

Algorithm 1 : An algorithm to construct a quantifier tree for a QBF formula

13

∧

∀a∀a

∀b

∃f

∃c

∀d ∀e

∃g ∃h

a∨¬c

c∨¬d∨g
c∨a∨¬g

a∨h
c∨e∨¬h

¬b∨¬f
¬a∨b∨f

Fig. 3.A minimal quantifier tree for (3)

wherec1, . . . , cn are the children ofn.

It is possible to prove that for each quantifier tree, the key propertyf ≡ qbf(tree(f))
holds. The rest of the algorithm thus safely works ont = tree(f) rather than onf ,
experiencing two classes of benefits (see subsequent paragraphs for details):

– The reduced universal depth of the existential variables will allow to produce sim-
pler instances during Step 3, faster computations during Step 4, and to directly
address a larger class of problems in Step 6.

– The duplication of universal connectives will allow Step 5 to effectively split the
main problem into unrelated subproblems.

As an example, let us consider the following quantified boolean formula and its minimal
quantifier tree depicted in Figure 3.

∀a∀b∃c∀d∀e∃f∃g∃h. (a ∨ ¬c) ∧ (¬a ∨ b ∨ f) ∧ (¬b ∨ ¬f) ∧ (a ∨ h)∧
∧ (c ∨ e ∨ ¬h) ∧ (c ∨ ¬d ∨ g) ∧ (a ∨ c ∨ ¬g) (3)

It is interesting to notice that:

– The formulaqbf(t) represented by this quantifier tree is logically equivalent to the
original formula. Namely:

qbf(t) = ∀a∀b∃f. ((¬a ∨ b ∨ f) ∧ (¬b ∨ ¬f)) ∧
∀a∃c. (a ∨ ¬c)∧

(∀d∃g. (c ∨ ¬d ∨ g) ∧ (a ∨ c ∨ ¬g)) ∧
(∀e∃h. (a ∨ h) ∧ (c ∨ e ∨ ¬h))

14

– The universal depth of the existential variables in the prenex form is 2 forc and 4
for f , g andh. In the quantifier tree, universal depth is reduced to 1 forc, and to 2
for f , g, h;

– There is one replicated universal variable immediately below the root (a). Quanti-
fier trees exploit the distributive property of universal quantifiers over conjunctions:
∀a. (f(a, . . .)∧ g(a, . . .)) ≡ (∀a. f(a, . . .))∧ (∀a. g(a, . . .)). In this simple exam-
ple, the transformation allows to consider the two child sub-problems of the root as
completely independent instances (thought they do actually share some variables).

The notion of ordering among quantifiers, dominating quantifiers and universal depth is
adapted to the tree-shaped prefix. By construction, the partial ordering induced by the
prefix of a formulaf is always arestrictionof the ordering≺T defined by its quantifier
treetree(f). In particular, the partial ordering relation between variables (quantifiers)
is defined in such a way thatv ≺T w when the node labeled byw lays in the subtree
rooted atv. The relation between “dominated” and “dominating” changes accordingly.
The dominating quantifiers forv (and for a clauseΓ) are the ones encountered along
the path from the root ton, i.e. the setding(v) = {d|d ≺T v} (andding(Γ) = {d|∃v ∈
var(Γ)|d ≺T v}). The dominated quantifiers are those in the subtree rooted atv, i.e.
the setded(v) = {d|v ≺T d}. The universal depthδ(e) of an existential variablee is
the number|ding(e) ∩ var∀(f)| of dominating universal quantifiers.

3.3 Step 3: Symbolic Skolemization

The aim of this step is to translate the problem fromQBF to a symbolic representation
of aPROP instance.

The Skolem theorem is employed to translate the tree-shaped representationt = tree(f)
produced by Step 2 into a compact,symbolicrepresentation of a purely existential in-
stance which is equivalent tof as to satisfiability.

There are three main ingredients here: (1) theSkolem theoremand its use in the present
context, (2) the way symbolic representations for the problems are introduced and man-
aged, and (3) the role of the stree-shaped structure produced during Step 2.

3.3.1 Propositional Skolemization. In the framework ofFirst Order Logic (and
other logics as well), the Skolem theorem is employed to resort to a purely existential
(purely universal) formula while retaining satisfiability equivalence. This transforma-
tion is especially useful to automate deduction, and this is indeed the reason why we
utilize it now.

The Skolem theorem—as applyed toFOL formulas—introducesSkolem functions
andSkolem constantsthat have no direct representation inPROP . Even if no syntactic
tool exists to directly represent such functions, they are not beyond the expressive power
of PROP , at the expense of an exponential blowup in the size of the instance. We adopt
apropositional skolemizationin three steps:

1. translation of theQBF instancef into an equivalentFOL instanceFOL(f).

15

2. application of the Skolem theorem toFOL(f) to obtain a (satisfiability preserving)
FOL instanceSk(FOL(f)) with no universal quantifier.

3. compilation ofSk(FOL(f)) into an equivalent SAT instanceProp(Sk(FOL(f))).

The first step (translation toFOL) is just syntactic sugar, but it allows to plainly cap-
ture the intuition of a purely propositional skolemization. Skolem funtions leverage the
existence of two semantics levels inFOL, namely the level ofpredicatesand the level
of terms. Skolem functions are terms that are substituted for other terms (the existential
variables) as arguments of predicates.QBF andPROP lack both the syntactic tools
and the interpretation mechanism necessary to cope with those two levels. They just
feature the predicate level, though this is slightly obfuscated by their variable-oriented
syntax.

To uncover such level, we introduce aFOL unary predicateb/1 defined over the
boolean space{0, 1}, and interpreted asb(0) = FALSE, b(1) = TRUE, and restrict
the domain of interpretation of every variable to be the boolean space as well. This
immediately allows us to rewrite aQBF formula as a syntactically correct and logically
equivalentFOL formula. For example, we rewrite theQBF formula

∀x∃y∀z∃k. (x ∨ y) ∧ (¬x ∨ ¬y ∨ z) ∧ (y ∨ ¬z ∨ k) ∧ (¬k ∨ z)

as aFOL formula

∀x∃y∀z∃k. (b(x)∨b(y))∧(¬b(x)∨¬b(y)∨b(z))∧(b(y)∨¬b(z)∨b(k))∧(¬b(k)∨b(z))

In the second step (skolemization), we eliminate existential variables by substituting
to each existential variablev a different Skolem functionsv, depending on the proper
subset of dominating universal quantifiers. We obtain a satisfiability-equivalent (not
logically equivalent) purely universal formula.

∀x∀z. (b(x) ∨ b(sy(x))) ∧ (¬b(x) ∨ ¬b(sy(x)) ∨ b(z))∧
∧ (b(sy(x)) ∨ ¬b(z) ∨ b(sk(x, z))) ∧ (¬b(sk(x, z)) ∨ b(z))

It is interesting to notice that from aFOL point of view, existential quantifiers are
simply disappeared, and that the dute we pay for this simplification is the loss of logical
equivalence. From a higher-level point of view, we can predicate over the interpretation
of terms and explicitly state what the Skolem theorem implicitly says when it reduces
the satisfiability ofFOL(f) to the satisfiability ofSk(FOL(f)), i.e. that eachinner
existentialFOL quantification overv has been substituted by anouter higher-order
existential quantification oversv (over the existence of a proper interpretation for the
Skolem terms we have introduced). Informally:

∀x∃y∀z∃k. f(x, y, z, k) ⇐⇒ [∃sy∃sk]∀x∀z. f(x, sy(x), z, sk(x, z))

In the third step (translation toPROP), the actual work is done. It amounts toflatten
the two semantics levels above onto one single propositional level. This transformation
is made easy by the constructive property that for every formulaSk(FOL(f)) (where
f ∈ QBF) both the predicate-level interpretation and the term-level interpretation map

16

boolean spaces onto boolean values. We may join their definition spaces and inter-
pretation functions, and give an inductive translation procedure fromSk(FOL(f)) to
PROP .
The only non-trivial piece of work consists of building a CNF propositional represen-
tation for every Skolem function. As a constructive consequence of steps 1-2, every
Skolem functions(a1, a2, . . . , an) we manage is a relations over{0, 1}n+1 that maps
{0, 1}n onto{0, 1}. Each one is completely specified by2n boolean parameters giving
the truth value of the function on each point of its domain, so22n

different Skolemn-
ary functions exist. Let us denote bysA the boolean parameter that represents the truth
value of a booleann-ary functions evaluated inA, where each single pointA in the def-
inition domain ofs is conveniently represented by a string ofn bits{A1, A2, . . . , An}.
We directly obtain a CNF propositional encode fors as follows:

Prop(s(a1, a2, . . . , an)) =
∧

A∈{0,1}n

sA ∨ ¬A1⊗a1 ∨ ¬A2⊗a2 ∨ · · · ∨ ¬An⊗an

Let us consider as an example the binary Skolem functions(a, b). It is

Prop(s(a, b)) = (s00 ∨ ¬a ∨ ¬b) ∧ (s01 ∨ ¬a ∨ b) ∧ (s10 ∨ a ∨ ¬b) ∧ (s11 ∨ a ∨ b)

The propositional formulaProp(s(a, b)) may be seen as a function mapping a point
〈a, b〉 ∈ {0, 1}2 in the domain ofs onto the proper truth valuesab.

The next step is to extend the propositional encoding from the level of terms to
the level of predicates. We limit our attention to the encoding of aFOL clause in
Sk(FOL(f)) into a satisfiability equivalent set of propositional clauses (the encoding
of the union of a set ofFOL clauses being just the union of the encodings of each
clause).

Let us first consider the simple case of a clause containing only one existentially
quantified variablee:

∀u1∀u2 · · · ∀un∃e. p1⊗ui1 ∨ p2⊗ui2 ∨ · · · ∨ pr⊗uir
∨ e

where{ui, i = 1, . . . , n} are all the universal variables dominatinge, while {uij
, j =

1, . . . , r, r ≤ n} is the subset of such variables that appear in the clause with polar-
ities p1, p2, . . . , pr respectively. The existential literale is assumed to be positive for
simplicity.
By substitutingthe propositional versionProp(s(u1, . . . , un)) of the Skolem function
s : {0, 1}n → {0, 1}, defined by the2n boolean parameters{s0...00, s0...01, · · · , s1...11}
for e, we obtain:

∃s0...00∃s0...01 · · · ∃s1...11

∀u1∀u2 · · · ∀un

p1⊗ui1 ∨ p2⊗ui2 ∨ · · · ∨ pr⊗uir∨
∨

(∧
A∈{0,1}n sA ∨ ¬A1⊗u1 ∨ · · · ∨ ¬An⊗un

)
As a consequence of the semantics flattening we have performed, the “meta” existential
quantifier over ann-ary Skolem function has been transformed into a set of2n outer

17

existential quantifiers. In the worst case, we have to distribute the conjunction over all
the clauses in the last term, thus obtaining2n clauses. Fortunately, some (many) of
those clauses are trivially satisfied by complementary literals. In particular, whenever
Aij⊗pj = 1 for at least onej ∈ {1, . . . , r}, the clause is satisfied, so that we get only
2δ(e)−r clauses. Moreover, skolemized clauses no longer contain existential variables
dominated by universal variables, hence all the universal literals areforall reducible. As
a result of these two properties, we obtain the set of unit clauses:

∃s0...00∃s0...01 · · · ∃s1...11.
∧

A ∈ {0, 1}n

∀j.Aij
⊗pj = 0

sA

In the general case we have clauses containingm existential variables{e1, e2, . . . , em}
with δ(e1) ≤ δ(e2) ≤ . . . ≤ δ(em) and polaritiesq1, . . . , qm, where eachei is domi-
nated by a set∪i

j=0Uj of universal variables. Each clause also contains a possibly empty
subset of universal variables{uk, k = ij−1 + 1, . . . , ij} ⊆ Uj for eachj = 1, . . . ,m,
with i0 = 0 and polaritiespk. The general shape for the clause is

∀U1∃e1 · · · ∀Um∃em. p1⊗ui1 ∧ · · · ∧ pj1⊗uij1
∧ q1⊗e1 ∧

pj1+1⊗uij1+1 ∧ · · · ∧ pj2⊗uij2
∧ q2⊗e2 ∧

...
pjm−1+1⊗uijm−1+1 ∧ · · · ∧ pjm

⊗uijm
∧ qm⊗em

(4)

By (a) propositionally skolemizing all the existential variables in such clause (the order
does not matter), and (b) applying forall reduction to all the variables in∪m

j=0Uj , we
obtain:

∃S1 · · · ∃Sm.
∧

A ∈ {0, 1}δ(em)

∀j.Aij⊗pj = 0

q1⊗s1
A|δ(e1)

∧ q2⊗s2
A|δ(e2)

∧ · · · ∧ qm⊗sm
A|δ(em)

(5)

wheresi
A is a boolean parameter representing the truth value overA ∈ {0, 1}δ(ei)

of the Skolem functionsi introduced forei, andSi = {si
A. A ∈ {0, 1}δ(ei)}, while

A|k denotes thek-bit long prefix of the binary vectorA. We denote byPropSk(·) the
translation function

PropSk : QBF −→ PROP

that applied to a generic QBF clause represented by Expression (4) yields the result
of our three-step translation, i.e. the set of clauses represented by Expression (5). The
cardinality of this clause set is2δ(em)−jm .

To skolemize an entire formula, we observe that Skolem functions are introduced once
per variable, not once per clause. So, the propositionally skolemized version of any
formula is obtained by joining together the skolem clauses obtained out of eachQBF
clause, always re-using the same skolem function parameters for the same existential
variable. The overall skolemization procedure may thus be seen as a mapping between

18

the originalQBF space and a purely propositional space defined over the variablessi
A.

As an example, suppose we want to propositionally skolemize3 the formula

∀x∃y∀z∃k. (x ∨ y ∨ ¬k) ∧ (¬x ∨ z ∨ k) ∧ (¬y ∨ ¬k) (6)

We obtain the following propositional instance:

∃sy
1∃sk

01∃sk
10∃sk

11. (sy
1 ∨ ¬sk

10) ∧ (sy
1 ∨ ¬sk

11) ∧ (sk
01) ∧ (¬sy

0 ∨ ¬sk
00)∧

∧(¬sy
0 ∨ ¬sk

01) ∧ (¬sy
1 ∨ ¬sk

10) ∧ (¬sy
1 ∨ ¬sk

11)
(7)

Now, suppose we find a model for (7). We would then be entitled to conclude that the
skolemized version of (6):

∀x∀z. (x ∨ sy(x) ∨ ¬sk(x, z)) ∧ (¬x ∨ z ∨ sk(x, z)) ∧ (¬sy(x) ∨ ¬sk(x, z)) (8)

is satisfiable, hence that (6) is satisfiable. Not only we are ensured that a proper inter-
pretation for the Skolem functionssy/1 andsk/2 do exist to satisfy the formula, but we
haveexplicitily computedsuch an interpretation. The model for (7) indeed gives us the
desired truth value of each skolem function over each point of their domains (for mod-
els that are partial assignments, unassigned variables corresponds to don’t-care values
in the truth table of the corresponding skolem function). As we will see in Section 5.3.3,
this information will be used bysKizzo to construct a model for (6).

3.3.2 Symbolic Representation.The ground CNF translation of aQBF problem
may be exponentially larger than the originating instance. As a consequence, not only it
may be unfeasible to solve the resulting SAT instance, but it might not even fit into the
memory of any real machine (space explosion). Without some powerful tool for com-
pactely representing and managing propositional skolemizations, the resulting ground
instances are definitely out of reach.

The term “symbolic representation” has a broad AI-related sense, but it is used with a
much more specific meaning in the realm of model checking (MC). According to MC’s
usage of the word, a symbolic representation is one that allows to shift fromexplicit
MC techniques—where each state of a system to be checked is individually represented
and manipulated—tosymbolicMC approaches—where data structures are employed
that allow to compactly and implicitly represent (possibly huge) sets of states, and also
to reason about them as a whole. We adopt MC’s viewpoint here.

We are interested in symbolically representing and manipulating sets of clauses. Re-
lated approaches do exist in the literature (see Section 5.1), but we have to manage
a very special case here. In particular, we are only interested in representingsets of
clauses arising from the propositional skolemization of aQBF formula, with a rep-
resentation that isclosedunder the symbolic operations applied in Step 4 and 5 (see

3 We don’t mix propositional skolemization and tree-shaped prefixes until Section 3.3.3, so this
formula is to be considered as a prenex CNF.

19

Section 3.4 and 3.5). Our representation employes one singlesymbolic clauseto com-
pactly represent the whole clause set described by the expression (5). So, we have a
one-to-one correspondence between symbolic clauses and originalQBF clauses.

To represent the set of clauses described by expression (5) we need to memorize
three pieces of information:

1. Theorderedlist Γ = [q1⊗e1, . . . , qm⊗em] of existential literals in the originating
QBF clause;

2. Theset of indexesI = {A ∈ {0, 1}δ(em) | ∀j.Aij⊗pj = 0};
3. The list [δ(e1), . . . , δ(em)] of universal depths together with the sets∪i

j=0Uj of
universal variables dominating each existential variable.

The information in Item 3 is not related to a single clause. Rather, it is an attribute of the
formula as a whole that only depends on the set of dominating variables for the literals
at hand. The prefix of a prenex formula (or the quantifier tree for a structured formula),
suffices to extract this information for every clause.

By contrast, the information in Items 1 and 2 actually define asymbolic clause
symb(C) obtained by theQBF clauseC, which we compactly denote by writingΓI .
So, the symbolic transformation

symb : QBF −→ QBFSY MB

maps QBF instances onto symbolic instances belonging to the space ofsymbolic QBF
instanceswhich we denote byQBFSY MB . The inverse function reconstructs a QBF
clausesymb−1(ΓI) out of a symbolic clause. The propositional skolemization is ex-
tended to symbolic clauses asPropSk(ΓI) .= PropSk(symb−1(ΓI)).

For example, the matrix of the propositionally skolemized formula (7) is compactly
represented as:

[y,¬k]{00,01} ∧ [k]{01} ∧ [¬y,¬k]{00,01,10,11} (9)

Each symbolic clause is made up ofsymbolic literals4, that we represent as symbolic
unit clauses, possibly omitting the square braces. For example, the symbolic clause
[y,¬k]{00,01} is made up by the symbolic literalsy{0} and¬k{00,01}. We say that a
symbolic literalγI belongs to a symbolic clauseΓJ , written γI ∈ ΓJ , whenγ ∈ Γ
andI ⊆ J .

A symbolic formula has both asymbolic sizeand aground size. The symbolic size
is the number of symbolic clauses (symbolic literals) in the formula. The ground size is
the number of clauses and literals in the plain propositional instance the symbolic for-
mula stands for. So, the symbolic size (number of clauses) for a symbolic formulaf is

4 We could have introduced concepts the other way around, i.e. by defining symbolic clauses
in terms of symbolic literals. However, all the symbolic literals in a symbolic clauseΓI share
the same set of indexesI. It is simpler to break a clause into literals that inherit indexes than
defining composition rules for obtaining correct symbolic clauses. Moreover, each bit ini ∈ I
“suddenly” refers to some universal variable, and a linear shape suffices to identify which one
just because clauses are attached to the proper point in the quantifier tree. As a result, arbitrary
compositions of symbolic literals may not represent meaningful symbolic clauses.

20

[c,¬e]
b

0 1 d

0 1

b

a[e]

Fig. 4.Symbolic representations for the skolemized version of two clauses clausesb∨ c∨¬e (on
the left) and¬a ∨ ¬b ∨ d ∨ e (on the right) under the relevant prefix∀a∀b∃c∀d∃e.

|f |symb =
∑

ΓI∈f |Γ |, while its ground size is|f |ground =
∑

ΓI∈f |I|. For example,
the formula (9) has symbolic size equal to3 and ground size equal to7. The ground size
is always greater than the symbolic size, as each symbolic clause represents at least one
ground clause.

As a second layer of symbolic representation, we compactly represent index sets by
means ofbinary decision diagrams(BDDs) defined over the setV ar∀(f). According
to the semantics of BDDs, an entire setI = {A ∈ {0, 1}δ(em) | ∀j.Aij

⊗pj = 0} is
represented by a single linear-sized BDD (inm) requiring one internal node for each
universal variable in the originatingQBF clause. Hence, the whole symbolic clause
has a linear size w.r.t. the number of literals in the originatingQBF clause. Figure 4
depicts our symbolic representation for two sample clauses.

Given that the size of each clause is linear in the size of the originatingQBF clause,
and that we produce only one symbolic clause for eachQBF clause,the symbolic size
of symb(f) is linear in|f |. However, this only holds for theinitial symbolic representa-
tion. The symbolic size may increase as a consequence of the manipulations described
in Section 3.4.

3.3.3 Quantifier Tree. The main role of the quantifier tree constructed in Step 3 is to
reduce the dimensionality of the Skolem terms. Let us consider again the formula

∀a∀b∃c∀d∀e∃f∃g∃h. (a ∨ ¬c) ∧ (¬a ∨ b ∨ f) ∧ (¬b ∨ ¬f) ∧ (a ∨ h)∧
∧ (c ∨ e ∨ ¬h) ∧ (c ∨ ¬d ∨ g) ∧ (a ∨ c ∨ ¬g)

and its syntactic tree depicted in Figure 3.
According to the linear prefix∀a∀b∃c∀d∀e∃f∃g∃h, we should introduce—among

the others—the skolem functionssc(a, b) andsh(a, b, e). But, certain dependencies are
artificially forced by the linear shape of the prefix. According to the quantifier tree,

21

it suffices to introducesc(a) and sh(a, e). So, when introducing Skolem functions,
sKizzo always looks at the quantifier tree to select as few arguments as possible.

The path from the root to the node where a clause is attached defines therelevantprefix
for that clause. Along the relevant prefix for a clause we encounter all the existen-
tial variablese1, e2, . . . , en in that clause;beforeeach existential variableei, we also
encounter all the dominating universals forei. These sets of dominating universals, to-
gether with the sequence of universal depthsδ(e1) ≤ δ(e2) ≤ · · · ≤ δ(en), are the
missing information to interpret a symbolic clause and reconstruct its ground meaning.
In fact, by expression (5), each index setI for a literalγI is a subset of{0, 1}δ(γ), where
thej-th bit ij in everyi ∈ I corresponds to thej-th dominating universal quantifier for
γ. By adopting such convention, we obtain two related effects:

1. we simplify the notation for symbolic clauses, and avoid representing redundant
information (i.e. to duplicate the information on the relevant sets of dominating
universals in each symbolic clause);

2. symbolic clauses are not self-contained objects, as we need to refer to the quantifier
tree to extract their ground meaning.

The second point would be of no importance for a linear, prenex formula, because the
meaning of thej-th bit in any index would be same for every literal (and every clause).
When we move to a tree-like syntactic structure, this property fails to be true, as the
meaning of each bit also depends on the branch of the tree the literal lays on.

Most manipulations we perform over symbolic clauses and literals only involve
symbolic objects on the same branch, so the above notation is unambiguous. But a few
of these operations (namely, those described in Section 3.4.3 and Section 3.4.4) may
involve clauses attached to different branches.

To make operations among generic index sets unambiguous, we redefine the notion of
projection and selection in terms of an underlying interpretation for index sets that refers
to the whole set of universal variablesV ar∀(f) = {u1, u2, . . . , un}. We interpret each
index setI ⊆ {0, 1}m relative to the universal variablesuj1 , uj2 , . . . ujm

, as a subset
UI ⊆ {0, 1}|var∀(f)|, where〈p1, p2, . . . , pn〉 ∈ UI iff an index i = 〈i0i1 . . . im〉 ∈ I
exists such thatik⊗pjk

= 0 for i = 1, . . . ,m. The complement setUI of UI is
{0, 1}|var∀(f)|\UI . The projectionUI |e of UI onto the existential variable (or literal)e
with dominating universalsuj1 , uj2 , . . . ujm is the set{〈i1i2 . . . iδ(e)〉 | ∃〈p1, p2, . . . , pn〉 ∈
UI with ik = pjk

, k = 1, . . . , δ(e)} ⊆ {0, 1}δ(e). Finally, byselectingUI with an uni-
versal literall = q⊗uk (on the variablevk with polarity q ∈ {0, 1}) as a condition, we
obtain the setUI ∗ l = {〈p1, p2, . . . , pn〉 ∈ UI | pk = q}.

For objects laying on the same branch of the tree, we maintain a light notation. For
example, given any two symbolic literalsαI andβJ on the same branch, we write
αI∩J to meanα(UI∩UJ)|α .

3.4 Step 4: Symbolic Normalization

22

The aim of this step is to (attempt to) decide the symbolic instance produced during the
previous step (hence, to decide the satisfiability of the originalQBF problem).

It works by computing the deductive closure of a set ofsymbolic inference rules. When
the set of rules adopted is not refutationally complete, instances exist that stay unde-
cided at the end of the current step. In these cases, however, a satisfiability-equivalent,
symbolic output formula is generated that is guaranteed to show a (much)smaller
ground sizethan the input formula. The aim of this step may thus be seen as an at-
tempt to reduce the complexity of the problem that Steps 5 and 6 will have to manage.

Thought symbolically represented, the formula we face is a purely existential CNF
propositional instance attainable via thePropSk function. The inference rules we adopt
need to add nothing to the well-known inference systems described in the literature to
simplify/decide such “ground” formulas. Rather, the emphasis is on designing symbolic
versions of the standard rules that work without expanding symbolic clauses to ground
clauses, symbolic literals to ground literals, and so on. In essence, it is a matter of
defining how the basic steps (subsumption, resolution, assignments substitution, etc.)
and their compositions can be performed at a purely symbolic level (i.e.: on sets insted
of on single set’s elements).

We may figure out what symbolic reasoning does by referring to the following com-
mutative diagram (whereNormR(·) denotes the subset of normalized formulas w.r.t a
set of inference rulesR).

QBFSY MB
PropSk−−−−−→ PROP

symbolic inferences

y ystandard inferences

NormR(QBFSY MB) −−−−−→
PropSk

NormR(PROP)

Symbolic reasoning consists in walking the diagram top-down first, then left-to-right.

The first step towards symbolic reasoning amounts to extend the star operator intro-
duced in Section 2.5 to the case of symbolic clauses and symbolic literals. This is done
as follows.

ΓI ∗ lJ =

ΓI∩J whenl ∈ Γ
ΓI∩J ∧ Φ(I∩J)|δ(Φ)

with Φ = Γ \ {¬l}, when¬l ∈ Γ

ΓI otherwise
(10)

The following inference rules build on top of the symbolic star operator.

3.4.1 SUCP: Symbolic Unit Clause Propagation.The SUCP rule is the simplest
one. It builds on top of the observation that each symbolic unit clause[γ]I in the for-
mula represents a set{γi|i ∈ I} of ground unit literals. All of them need to be assigned
to avoid contradictions. These assignments can be performed all-at-once by simply ex-
ploiting the symbolic star operator. See Algorithm 2.

23

input : A symbolic formulaf

output: A symbolic formulaf ′
SAT≡ f with no unit clause

while [γ]I ∈ f and⊥/∈ f do
f ← f ∗ γI ;

end

Algorithm 2 : A basic version of the symbolic unit clause propagation rule

input : A symbolic formulaf

output: A symbolic formulaf ′
SAT≡ f with no pure literal

V← var∃(f);
while V 6= ∅ andf 6= ∅ do

pick onev ∈ V;
P← ∅;
foreach ΓI ∈ f such thatv ∈ Γ do

P← P ∪ I|δ(v);
end
N← ∅;
foreach ΓI ∈ f such that¬v ∈ Γ do

N← N ∪ I|δ(v);
end
I+ ← P ∩ N;
I− ← N ∩ P;
foreachΓI ∈ f such thatvI+ ∈ ΓI or ¬vI− ∈ ΓI do

foreachγ ∈ Γ do
V← V ∪ var(γ);

end
end
V← V \ {v};
f ← f ∗ vI+ ;
f ← f ∗ ¬vI− ;

end

Algorithm 3 : A basic version of the symbolic pure literal elimination rule

3.4.2 SPLE: Symbolic Pure Literal Elimination. The SPLE rule does what we
would expect from the standard rule, but performs its job in a purely symbolic manner.
It (a) constructs a complete symbolic representation of the set of everypure ground
literal, and (b) applies this literal to the formula. The simplest way5 to perform symbolic
PLE is reported in Algorithm 3.

5 On the implementation side, the simplest way might fail to be the best way. Thought quite
intuitive, Algorithm 3 sometimes gets into troubles because big BDDs are generated as inter-
mediate results. So, we also designed a step-by-step version that (a) computes pure literals out
of each clause (rather than for each variable), and (b) always manages several (still unfinished)
computations at once, with a greedy, cost-minimizing scheduler to control the job.

24

input : A symbolic formulaf

output: A symbolic formulaf ′
SAT≡ f normalized w.r.t SHBR

continue← TRUE;
while continue andf 6= ∅ do

continue← FALSE;
G← the symbolic implication graph overf ;
foreachsource nodes ∈ G do

foreachpaths = a0
I1−→ a1 · · ·

In−1−→ an−1
In−→ an in G with an = ¬ak do

UI ← ∩n
j=k+1UIj ;

if UI 6= ∅ then
I ← UI |a;
f ← f ∗ ¬aI ;
if new binary clause createdthen

continue← TRUE;
end
if ⊥∈ f then

return UNSAT;
end

end
end

end
end
return f ;

Algorithm 4 : The symbolic hyper binary resolution algorithm

3.4.3 SHBR: Symbolic Hyper Binary Resolution. The SHBR rule enumerates all
the resolution chains of symbolic binary clauses, looking forfailed symbolic literals,
i.e. for literals¬aI such that each¬ai ∈ ¬aI can be derived (via a finite number of
resolution steps only involving binary clauses) as a consequence of the hypothesisai.
Each ground literal inaI generates a contradiction (f ∗ ai is UNSAT for everyi ∈ I),
so we force the opposite symbolic assignment, thus shifting our attention ontof ∗¬aI .

To compute all the failed literals we employ an approach similar to the standard one
for propositional logic (see Section 5.1). We build asymbolic implication graph, which
has a node for each positive and negative existentially quantified variable in the original

formula, and a couple of arcsa
I−→ ¬b andb

I−→ ¬a for each binary symbolic clause
[a, b]I . So, unlike standard implication graphs, symbolic graphs featurelabeled arcs.
The arc originating from[a, b]I is labeled byI. Should an arc be originated from more
than one clause, it would be labeled by theunionof the sets of indexes of each clause.

Each symbolic arca
I−→ b represents a set ofground arcs{ai|δ(a)

−→ bi|δ(b)
, i ∈ I}.

At this point, following the two-level symbolic representation of clauses, we employ
a two-step algorithm for extracting symbolic failed literals (see Algorithm 3.4.3):

1. We discover all thepotentialfailed literals by discarding the labels on the arcs. A
depth-first, non-redundant visit starting from eachsourceof the graph is employed.
A potential failed literala is one for which we have encountered the following

(portion of a) resolution path:a
I1−→ a1

I2−→ · · · In−→ ¬a;

25

2. As each symbolic arc represents a set of ground arcs, a symbolic path froma to
¬a in the symbolic implication graph represents a (possibly empty) set of ground
paths. We are interested in symbolically extracting all such ground paths, by (a)
intersecting the indexes encountered along the path, and (b) projecting the resulting
set onto the index domain relevant toa.

It is interesting to note that a failedn-step path over a symbolic implication graph im-
mediately maps onto a sequence ofn + 1 nodes in the quantifier tree of the formula
(where the first node is equal to the last one) which we call aloop. Every two subse-
quent nodes in this loop always lay on the same branch (because an arc is originated
from a binary clause which by construction is attached to its lowest existential variable
in a branch where the other one isalreadyappeared). So, the loop is made up of top-
down and bottom-up steps, but nolateral step is allowed. Bottom-up steps may only
follow the path towards the root, as the underlying structure is a tree, while top-down
steps may “choose” a branch whenever more than one is given. As a consequence, loops
made up of at least 4 steps may cover a subtree of the quantifier tree, not just a linear
branch. This means that the definition domains of the symbolic literals involved in a
chain of derivations are not necessarily sub-domains of one another. The extraction of
anactual failed literal from a potential failed literal takes into account this property by
exploiting the notions introduced in the last part of Section 3.3.3.

The rules described so far only rely on symbolic assignments. The next rule in addition
requiressymbolic equivalency, which we now introduce informally. A symbolic literal
aI|δ(a)

is equivalent to a symbolic literalbI|δ(b)
when (1)a and b lay on the same

branch of the quantifier tree, and (2) for eachi ∈ I, ai|δ(a)
↔ bi|δ(b)

is a consequence
of the formula. When this happens, we can simplify the formula by substituting each
occurence ofaI|δ(a)

with bI|δ(b)
(or vice-versa).

Clauses may fall into one of three classes when a standard propositional substitu-
tion is applied: (1) those which remain untouched, (2) those which only contain the
substituted literal and thus exchange one literal for another, and (3) those which con-
tains both variables involved in the substitution, and may thus be either (3a) satisfied
(when the substitution generate a couple of opposite literals) or (3b) shortened (when
the substitution generates two copies of the same literal).

This three-fold consequence of substitution stays the same in the symbolic case,
with the caveat that symbolic clauses actually represent sets of ground clauses and lit-
erals, and symbolic substitutions represent sets of equivalencies over ground literals.
In general, it is not the case that the whole set of literals (if any) in a symbolic clause
is covered by the substitution. This means that in the case (2) and (3b) above we may
obtaintwosymbolic clauses out of each originating clause after substitution is applied.

3.4.4 SER: Symbolic Equivalency Reasoning.The SER rule works on the very
same symbolic implication graph used during SHBR. It aims at identifying sets of sym-
bolic literals that are equivalent to one another. Thereafter, symbolic equivalency is
applied to simplify the formula. Following the two-level symbolic representation of
objects insKizzo we employ a two-step algorithm to perform symbolic binary equiva-
lence reasoning:

26

input : A symbolic formulaf

output: A symbolic formulaf ′
SAT≡ f normalized w.r.t. SER

continue← TRUE;
while continue do

continue← FALSE;
G← the binary implication graph overf ;
SCC← the set of strongly connected components inG [Kosaraju, Sharir];
foreachS ∈ SCC do

lits← the set of literals inS;
while lits 6= ∅ do

m← one literal inlits with the maximal universal depth;

foreach loopa0
I1−→ a1 · · ·

In−1−→ an−1
In−→ a0 in S with m = a0 do

UI ← ∩n
j=0UIj ;

if UI 6= ∅ then
if ∃i∃j.ai = ¬aj then

return UNSAT;
else

a← oneai with the minimal universal depth;
Ia ← UI |a;
foreach b = aj , b 6= a do
Ib ← UI |b;
Apply equivalencyaIa ↔ bIb to f ;
if new binary clause created by step (3b)then

continue← TRUE;
end

end
end

end
end
lits← lits \ {m};

end
end

end
return f ;

Algorithm 5 : The symbolic equivalency reasoning algorithm

1. First, we extract all thestrongly connected components(SCCs) from the implica-
tion graph, discarding labels on arcs. In the standard propositional case, each SCC
identifies an equivalence class over the set of literals, but this would be a too strong
conclusion were it directly applied to symbolic literals: in the propositional case,
any two node in a SCC are part of a non-intersecting loop entirely belonging to
the SCC, and this is the reason why they are equivalent. In the symbolic case, any
two ground literals in a SCC belong to some symbolic loop; this is anecessary
condition for equivalence, but their actual equivalence has to be tested;

2. To test the equivalence of literals in each SCC, we cannot consider the component
as a whole (we would reach a too weak conclusion by assuming that the equivalency
of literals stem by traversingall the symbolic arcs); rather, we have toenumerate

27

the loops belonging to the SCC, and for each symbolic loop we have to compute
the actual set of ground loops it stands for (using the same technique as in HBR).

A significant difference w.r.t. the standard propositional case comes into play at this
point. What ER does in that case is to extract one representative literal out of each
equivalency class and then apply substitution. The selection is done arbitrarily, as all
literals are equivalent: the formula resulting after substitution is the same whichever
literal is chosen (apart from the name of the variable representing the class of equiva-
lence). This is not true for the symbolic case, because two equivalent symbolic literals
may be defined over Skolem domains of different dimensionality (thus generating a dif-
ferent set of ground literals and clauses). So, after we have tested that the symbolic loop
is non-empty, we still need to select a representative literal from that loop.

In addition to this, when we move from the SCC-as-a-whole technique to the ex-
traction of a sequence of loops in the SCC, we implicitly generate anorderingamong
substitutions whose effect is worth considering.

Our answer to these degrees of freedom aims at reducing the ground size of the re-
sulting formula, and is given in Algorithm 5. Note that the correctness of this algorithm
relies on a hidden property, i.e. that the minimal-depth literal in every loop over the
quantifier tree always dominates all the other literals in the same loop.

3.4.5 Notes on symbolic inferences.Step 4 might be forced toenlargethe size of its
own representation of the problem in order to reduce the size of the instance that Step 5
and 6 will have to manage. It is possible indeed for a smaller ground instantiation of the
problem to correspond to a more complicated symbolic representation for the problem
itself. There are two major sources of enlargement, reflecting the two-level symbolic
representation of the clauses:

– Set representation is done via BDDs. It is well known that the size of a binary
decision diagram is not directly related to the size of the set it represents [76]. For
the initial symbolic skolemization, this size is linear (see Section 3.3.2), but when
the star operator and the other rules are applied, BDDs start representing “non-
convex” sets of indexes. Though smaller as to ground size, these sets may require
more space at the symbolic level (see experimental results at Section 4.3).

– Symbolic assignments may split each single symbolic clause they touch into cou-
ples of clauses, in such a way that even if the overall ground cardinality is never
increased, the number of symbolic clauses may grow, and their memory represen-
tation is enlarged as well.

We also notice that there is a class of formulas that can be decided without requiring
more than what can be done during Step 4. In general, this class is implicitly defined by
the inference power of the combination of the symbolic rules we adopt. In particular,
at least all the instances that contain no more than two existentially quantified variables
per clause are decided during this step. This is a consequence of two properties of the
standard rules for binary reasoning inherited from their symbolic counterparts. Namely:

– A PROP formula only containing2-clauses is satisfiable iff no contradiction is de-
tected during hyper binary resolution;

28

∀a

∀c

∃e

∃b

∀c ∃d

f3f1 f2

∃b

∀c ∃d

f1*a
f2*a

∀c

∃e

f3*a

∀c

f1*a*b

∃d

f2*a*b

∀c

f1*a *¬b

∃d

f2*a *¬b

∃e

f3*a *c

∃e

f3*a *¬c

a=T a=F

b=T

b=F
c=T c=F

∃b

∀c ∃d

f1*¬a f2*¬a

∀c

∃e

f3*¬a

∀c

f1*¬a*b

∃d

f2*¬a*b

∀c

f1*¬a *¬b

∃d

f2*¬a *¬b

∃e

f3*¬a *c

∃e

f3*¬a *¬c

b=T
b=F

c=T c=F

Fig. 5. The top-most part of an AND/OR, divide-et-impera search tree for the formula
∀a((∃b(∀c f1(a, b, c)) ∧ ∀d f2(a, b, d)) ∧ ∀c∀e f3(a, c, e))

– A PROP formula only containing2-clauses is satisfiable iff no SCC contains a
variable in both polarities6.

3.5 Step 5: Symbolic Divide-et-Impera

The aim of this step is to apply a systematic procedure to decide all the problems that
no previous step has been able to decide.

The procedure we apply employs a top-down strategy that is best described in an induc-
tive manner (see Algorithm 6):

6 For the symbolic case this is just a necessary condition. As we saw, it is also necessary that
both literals lay on a ground cycle contained in that SCC.

29

Algorithm 6 : symbDecide

input : A tree-shaped symbolic formulat
output: A SAT/UNSAT answer

begin
// normalization performed by Step 4
tnorm ← normalize(t);
if tnorm = ∅ then

outcome← SAT

else if⊥∈ tnorm then
outcome← UNSAT;

else
if groundVersionIsAffordable (tnorm) then

groundCnf← PropSk(tnorm);
outcome← SatSolver.solve (groundCnf);

else
l← labelattherootoftnorm;
if (l = “ ∧ ”) then

outcome← SAT;
foreachchild subtreet′ of tnorm do

outcome← outcome andsymbDecide (t′);
end

else
leftOutcome← SAT;
foreachchild subtreet′ of tnorm do

leftOutcome← leftOutcome andsymbDecide (t′ ∗ l);
end
rightOutcome← SAT;
foreachchild subtreet′ of tnorm do

rightOutcome← rightOutcome andsymbDecide (t′ ∗ ¬l);
end
if isUniversal(l) then

outcome← leftOutcome andrightOutcome;
else

outcome← leftOutcome or rightOutcome;
end

end
end

end
return outcome ;

end

base case 1When symbolic normalization suffices to solve the instance, report the
symbolic solution.

base case 2When the instance can be addressed in aground way, just do it.
inductive case When no base case applies, divide the instance into smaller sub-instances

according to the quantifier tree, and report that the whole instance is SAT iff each
sub-instance is SAT.

30

The inductive case deals with two conceptually different trees: the syntax-related quan-
tifier tree of the symbolic formula, and the semantics-related AND/OR search tree that
is visited to decide the instance. The former is explicitly manipulated as a parameter, the
latter is implicitly explored via the recursive structure of the decision procedure. The
two trees are related in the sense that each node of the quantifier tree is to be decided by
checking both truth values for the labeling variable (or just one, should lazy evaluation
suffice), while each truth value generates a set of quantifier sub-trees to be recursively
decided. The resulting situation is depicted for a sample case in Figure 5.

To have the whole procedure working we need to extend the meaning of the star operator
when it is applied with a ground universal literalv as a second argument:

ΓI ∗ v =
{

ΓI∗v whenv ∈ ding(Γ)
ΓI otherwise

(11)

where theI ∗ v operation denotes the existential abstraction defined in Section 3.3.3.

3.6 Step 6: Groundization

The aim of this step is to compute an actual compilation to SAT of a symbolic CNF
representation, whenever Step 5 decides to encode sub-problems into SAT instances to
be passed to a SAT solver.

In essence, this step computes thePropSk function by applying expression (5). Al-
tought theorically straightforward, this operation deserves a lot of attention on the prac-
tical side (see Section 4.1.3). Groundization is made up of two steps: (1) generation of
the ground space and (2) generation of the ground clauses.

3.6.1 Ground space generation.The key operation to be performed is to construct
a mapping between thestructured namespaceof symbolic literals and aflat namespace
for ground literals, which is more SAT-solver friendly. This amounts to uniquely as-
sociate a positive integerk (representing a propositional variablepk) to each ground
literal vi that belongs to at least one symbolic clause in the current symbolic formula.
The association should also work the other way around (necessary to model reconstruc-
tion), so we need a bijective function.

In addition to this functional property, we also desire two additionalnon-functional
requirements:

Compactness.The set of integers generated for the formula as a whole should be com-
posed of all and only the integers in the interval[1, n], for some sufficiently largen
(no unused variable code: this is to avoid that the SAT solver allocates unnecessarily
large data structures);

Invertibility. It should be possible to compute both the direct and the inverse mapping
function efficiently (ideally, near toO(1)).

31

The signature of the resulting mapping function is

Vmap : D∃ ×D∀ → [1, n]

whereD∃ = var∃(f) andD∀ = {0, 1}|var∀(f)|. The function is partial, as it is defined
only over ground literals actually belonging tof .

3.6.2 Ground clauses generation.OnceVmap is constructed, a clauseΓI , with Γ =
{p1⊗e1, p2⊗e2, . . . , pm⊗em}, is expanded to its ground meaning by producing for each
i ∈ I the ground clause

sign(p1) ·Vmap(e1, i|e1)∧sign(p2) ·Vmap(e2, i|e2)∧ . . .∧sign(pm) ·Vmap(em, i|em
)

wheresign(p) = +1 for p = 1 andsign(p) = −1 for p = 0.

4 Implementation and experimentation

In this section we present a first implementation of our decision procedure and a pre-
liminary experimental evaluation. The interested reader may find further details and a
wider experimentation at [4]. The section is organized as follows. Section 4.1 discusses
our implementation. Section 4.2 introduces other solvers and describes the benchmarks
used for evaluation. Functional results forsKizzo are reported in Section 4.3. Finally,
Section 4.4 focuses on relative solvers’ performance.

4.1 Implementation

sKizzo features a preliminary implementation (current version:sKizzo v0.1), which
is a 60k-line piece of code written in C using an object-oriented programming style. It
has been developed from scratch on a 14” iBook running MacOS X 10.3, using Xcode
1.(2-5) as a programming environment, gcc 3.3 as a compiler and Shark 4.0 as a pro-
filer. Such platform has been used to extract the results presented in Section 4.3. The
performance-related experimental results given in Section 4.4 have been obtained on a
different platform. Namely, the whole system has been ported to Linux and tested on a
2.6GHz P4 processor with 1GB main memory, running RedHat 9.3. Compiler version
for the Linux platform is 3.4.
sKizzo relys on two libraries (a C and a C++ library) to perform its work. Figure 6
depicts the interactions amongsKizzo’s steps and the following two libraries:

A BDD package. We employ the CUDD package [72], version 2.4.0, by Fabio Somenzi
(Department of Electrical and Computer Engineering, University of Colorado at
Boulder) which is meant for manipulation of Binary Decision Diagrams (BDDs),
Algebraic Decision Diagrams (ADDs) and Zero-suppressed Binary Decision Dia-
grams (ZDDs).

A SAT solver. We exploit zChaff [52], version 2004.5.13, a state-of-the-art, search-
based SAT solver from the SAT Research Group at the Princeton University.

32

QBF

normalization

Symbolic

skolemization

Symbolic divide-

et-impera

Symbolic

normalization

Syntax tree

reconstruction

 BDD package
(CUDD)

Groundization

 SAT solver
(zChaff)

QBF
 instance

SAT / UNSAT

 K
s i z z o

Fig. 6. Interaction betweensKizzo and the libraries it exploits

Our implementation produces statistical information for families of instances, and de-
tailed reports of the solution process of single instances, also including the time and
memory requirements per phase. Some steps (such as tree reconstruction and prelim-
inary QBF simplification) may be optionally disabled. On demand, both the recon-
structed syntactic trees and the sets of ground instances produced may be dumped on
secondary memory in a textual format for later analysis.

In the rest of this section, we devote our attention to a few implementation-related issues
that may have a strong impact over the run-time performance ofsKizzo.

4.1.1 Efficiency monitoring. Our implementations of the symbolic inference rules
used during Step 4 show quite instance-depending performances (deductions per time
unit). For example, the pure literal elimination rule is quite slow on certain instances,
while the unit clause propagation quickly attacks the same problem, or vice-versa. All
the rules but PLE may also occasionally lead to an explosion of the number of symbolic
clauses, but this explosion appears to strongly depend on which other rules have already
reached the fixpoint.

Being still absent a theorical framework explaining these and other effects, we de-
cided to temporarily classify this topic as an implementation-related issue. We indeed
resort to a heuristic, on-the-fly scheduling policy for inference rules.

33

In particular, we implemented a fix-priority policy with on-the-fly resource con-
sumption monitoring and preemptive interruption capabilities. A fixed priority is as-
signed off-line to each rule, according to some statistical evidences. The scheduler keeps
on picking the highest-priority inference rule that has not yet reached the fixpoint, and
applies it until either the fixpoint is reached, or the rule begins totrash. Trashing is
defined in terms of resource consumption, in particular memory consumption (see be-
low) and time efficiency. The latter measure is computed by monitoring the number
of inferences per second the rule is performing, and the consequences of these infer-
ences both on the symbolic size and on the ground size of the problem. By analysing
the typical behaviour of symbolic rules, we defined for each rule some trashing con-
dition (for example: “PLE is trashing whenever it shows for more thanN contiguous
inference cycles ashrinking ratefor theprojected ground sizeof the problem which is
both monotonically decreasing and constantly below tresholdT ”). When the monitor
decides that a rule is trashing, the rule itself is preemptively interrupted and marked as
a “trashing rule”. Then, the next highest-priority, non-trashing rule (if any) is applied.

The scheduler not only monitors what the currently rule is doing, but it also tracks
what is happening to the rules that are currently inactive (either at the fixpoint or trash-
ing). Inactive rules may indeed loose both their staus of “fixpointed rule” and their
status of “trashing rule” as a consequence of other rules’ behaviour, with consequences
on the rest of the inference trace.

4.1.2 Memory management.The virtual memory facility provided by all modern
operating systems is largely unuseful (if not dangerous) for resolution-basedQBF
solvers. These solvers tend indeed to be memory-eager. When physical memory is over,
the OS—hoping to help—suddenly moves on to the next level of the memory hierarchy
(virtual memory is expanded to the disk). Memory access becomes orders of magnitude
slower and raw performance heavily falls down. The point is thatsKizzo (together with
some other QBF solvers) needs to “contineously” refer to all (or to a great part of) the
information it has stored in memory, so no portion of such information is safely moved
to secondary memory (as opposed to what happens in many other common situations).
The only way of avoiding memory trashing, is to avoid consuming the whole physical
memory.

sKizzo performs a contineous monitoring of memory consumption, with the aim of
avoiding that swap-to-disk even begins. Steps that may consume great amount of mem-
ory are Symbolic Normalization (the number of symbolic clauses increase, BDDs get
larger), Symbolic Divide-et-impera (many symbolic instances at the same time have to
be maintained when deep decision levels are reached), and Groundization (the potential
compilation-to-SAT blow-up gets real). The first two situations are rather uncommon.
They are dealt with as non-recoverable problems.sKizzo surrenders and communi-
cates to the user that memory limitations prevented him from solving the instance. The
last situation——fairly more common—is managed by estimating the memory require-
ments for every SAT instance, before the instance itself is generated. Should those pro-
jected requirements overcome available physical memory, the instance would not gener-
ated and the divide-et-impera procedure would be requested to split the problem at hand
into (more but) smaller sub-problems. This dynamic adjustment creates an interesting

34

(and automatic) time/memory tradeoff, whose simplest effect is to produce different ex-
ecution traces (and execution times) on the very same machine by just adding/removing
physical memory (withoutadjusting any parameter).

4.1.3 Mapping to CNF. The mapping function realized by Step 6 is a time-critical
one. It is in general responsible for producing several ground problems per session, each
problem having up to million clauses (each clause in turn made up of several literals to
be translated). It is quite common for the mapping function to be called hundreds mil-
lion times during one session’s lifetime. Also, generation time overcomes solution time
for a large class of instances. For these reasons, a careful engineering of data structure
is necessary. In particular, hash tables and logical properties of the underlying ordered
decision diagrams are heavily exploited. The inverse function is also to be computed ef-
ficiently, as model reconstruction—thought not yet implemented—will be a key feature
of sKizzo.

Another interesting computation in need for efficiency concerns the number of
ground clauses the current symbolic instance would produce, should it be made ground
immediately. A lazy, purely symbolic estimation of the ground size (based on prop-
erties of the BDDs) is performed. This capability is exploited several times, though
performance is a concern only duringefficiency monitoring, due to the high number of
estimations required (see Section 4.1.1).

4.2 Benchmarks and solvers

To evaluatesKizzo we refer to the QBFLIB’s archive [33] maintained by the STAR-lab
group at the University of Genova. This growing set of benchmarks is currently com-
prised of more than 4000 instances and have been used in the “QBF Solver Evaluation”
sessions during SAT03 and SAT04.

In this preliminary evaluation, we focus on a subset of the non-random families of
instances collected in the QBFLIB. In particular, we consider:

Rintanen’s benchmarks [59], the first and best-known collection of QBF problems,
made up of 47 instances divided into 5 families, obtained by encoding planning
problems into QBF. These instances are currently within the solving capabilities of
most state-of-the-art solvers, so they can be exploited to compare the time/memory
requirements of different solvers.

Ayari’s benchmarks [1], made up of 72 instances divided into 5 families, obtained
from real-world verification problems on circuits and protocol descriptions. These
instances are still quite challenging for modern solvers, and some of them have
never been solved.

Biere’s benchmarks [9], made up of 64 instances divided into 4 families; then-th
instance in each family translates a model checking (MC) problem stating an invalid
safety property over ann-bit counter (the optionalresetandenableinputs yield 4
combinations clustered into 4 families). The properties state that the counters never
reach theall-one state starting from theall-zero state (each one thus fails to be
true after2n − 1 steps). Such problems are easy for BDD-based symbolic MC.

35

Conversely, they are rather difficult for SAT-based bounded MC techniques, as they
capture the worst-case scenario in which the number of steps necessary to falsify
the property equals the diameter of the system. These instancescould besimple
but effective witnesses of the fact that QBF-reasoning really adds something to
SAT-based methods.

In Section 4.3 we also refer to other families, such us those obtained by encoding modal
logic instances.

In Section 4.4 we compare with the SOTA solver (from State-Of-The-Art) and with a
few among the best real solvers. The SOTA solver is an ideal solver built by starting in
parallel all the existing real solvers. It conquers an instance if (and as soon as) one of
the real solver does. Thus, in no benchmark the SOTA solver performs worse than any
real solver, as itdominatesall of them. The time taken to solve a set of instances with
the SOTA solver is the sum of the best time on each instance (the calculation may thus
involve more than one real solver per family). In practice, to construct the SOTA perfor-
mance profile we have to limit our attention to a specific set of real solvers, and target
a limited set of benchmarks with all these solvers. Here we refer to the SOTA solver
made up by all the solvers participating in the QBF04 evaluation, as it results from [43].

To directly compare with a few real solvers, we will restrict our attention to four state-
of-the-art solvers, among which we find the three top-rated solvers according to most
of the results presented in [43] (see also Section 5.1). Namely:

QuBE-LRN [33], version 1.3, a search-based solver featuring lazy data structures for
unit clause and pure literal propagation, plus conflict and solution learning.

Quantor [9], version 2004.01.25, a solution-based solver employing q-resolution and
expansion to eliminate quantifiers, plus a number of other features to improve effi-
ciency.

SEMPROP[45], version 24.02.027, a search-based solver featuring directed backtrack-
ing and lemma/model caching.

yQuaffle[78], version 09.30.04, a search-based solver featuring multiple conflict-driven
learning, inversion of quantifiers and solution-based backtracking.

Two more interesting solvers for QBF are ZQSAT [32] and QMRES [57]. They have
been developed quite recently, and apply symbolic techniques to QBF. We plan to di-
rectly compare with these solvers when public releases will be available. In the mean-
while, indirect comparisons can be deduced from the data presented in [57, 32].

4.3 Functional results

Here we briefly address—from an experimental point of view—three aspects:

1. The actual role of the QBF inference rules employed in Step 1.

7 A more recent version does exist, but we have experienced some problems in making it work
on our test platform.

36

Instance Variables Clauses Alt. Prefix shape

flipflop-3-c 551 203 2 E[9]A[15]E[140]
cf-2-2x3-w 94,206 1,375 6 E[14]A[2]E[164]A[2]E[164]A[2]E[164]
cf-2-4x8-d 99,432 43,333 32 E[455]A[4]E[818]· · ·E[818]A[4]E[407]
cf-2-9x5-w 745,140 95,180 46 E[67]A[9]E[1357]· · ·E[1357]A[9]E[674]

ripple-carry-10-c 292,399 423,084 2 E[29]A[220]E[289368]
ripple-carry-11-c 414,410 601,952 2 E[32]A[264]E[410918]
ripple-carry-12-c 571,099 832,132 2 E[35]A[312]E[567114]
ripple-carry-13-c 768,478 1,122,585 2 E[38]A[364]E[763968]
ripple-carry-14-c 1,013,0391,482,992 2 E[41]A[420]E[1007972]

Table 1.Some non-trivial instances decided by preliminary QBF reasoning

2. The effectiveness of the tree-reconstruction algorithm (Step 2) on real-world in-
stances.

3. The deductive power of symbolic-only reasoning (Step 4).

Though the main goal of Step 1 is to reduce the formula to an existential-scope-only
normal form, its simplification effects are sometimes surprisingly strong. For example,
several non-trivial formulas (w.r.t. their size) exist in the test benchmarks that are not
beyond the deductive power of the incomplete set of rules adopted. Table 1 shows a few
instances from the QBF library that are completely solved during Step 1. Some sparing
“monster” instances having more than one million variables (such as the biggest ones in
the ripple-carry series) were already noticed to be addressable despite their huge size
[QBF03]. According tosKizzo’s experimental evidences, some families of instances
lay in the class of tractable QBF problems, as the inference engine in Step 1 has poly-
nomial complexity.

As far assKizzo is concerned, the final objective of Step 2 is to reduce thearity of the
skolem functions that are being introduced. When tree reconstruction is not performed,
the prefix we manage is a linearly shaped structure, with a length equal to the number
of variables in the instance (i.e. a tree with one single branch). In the worst case, such
structure stays untouched after tree reconstruction. But in general, we may expect that
the resulting tree is a non-collapsed structure, with more than one branch, and a maximal
depth which is lower than the number of variables in the instance. Consequently, we also
expect that both the average and the maximal universal depth of existential variables
decrease. How relevant are these results over real-world instances?

Table 2 gives a first answer. It compares the depth, average universal depth, and
maximal universal depth computed over the linear prefix (the first three columns),
against the same values computed on the reconstructed syntactic tree. On these in-
stances, the impact of our reconstruction algorithm is clearly strong, and in some cases
even surprisingly strong (see for example the instance-independent shape of thetree
family).

37

Before reconstruction After reconstruction
Instance Var Max∀-depth Avg∀-depth Depth Max∀-depth Avg∀-depth

adder-12-sat 2,665 942 804.8 227 80 43.1
adder-12-unsat 2,687 486 277.9 2189 354 242.8
adder-14-sat 3,641 1,281 1,093.5 267 94 50.2

adder-14-unsat 3,667 665 381.1 2,988 483 331.8
adder-16-sat 4,769 1,672 1,426.4 307 108 57.4

adder-16-unsat 4,799 872 500.6 3,911 632 434.6
Adder2-10-c 7,970 445 417.8 670 300 287.8
Adder2-10-s 7,970 545 524.8 98 56 29.5
Adder2-12-c 11,580 642 603.0 957 432 414.5
Adder2-12-s 11,580 786 756.9 116 68 35.3
Adder2-14-c 15,862 875 822.0 1,296 588 564.2
Adder2-14-s 15,862 1,071 1,031.5 134 80 41.2
flipflop-6-c 6864 30 29.9 560 18 17.6
flipflop-7-c 15,213 35 35.0 1,330 21 20.7
flipflop-8-c 30,427 40 40.0 2,824 24 23.8
flipflop-9-c 56,175 45 45.0 5,466 27 26.9
flipflop-10-c 97,272 50 50.0 9,820 30 29.9
flipflop-11-c 159,837 55 55.0 16,610 33 32.9

k-branch-n-20 13822 127 97.9 5568 127 64.3
k-branch-p-19 12544 121 93.2 5063 121 61.3

k-d4-n-16 1438 69 51.7 755 69 35.3
k-d4-p-19 1176 62 45.9 638 62 31.6

k-dum-n-18 885 44 32.2 495 44 22.4
k-dum-p-20 854 41 30.5 469 41 21.4
k-grz-n-18 792 24 17.4 393 24 11.2
k-grz-p-19 767 24 17.7 379 24 11.5
k-lin-n-19 4103 18 11.8 2248 18 8.2
k-lin-p-18 932 12 9.9 430 12 8.4
k-t4p-n-19 2725 123 90.9 1446 122 61.4
k-t4p-p-19 1470 69 50.6 782 68 34.5
k-poly-n-18 1465 110 84.0 926 110 69.1
k-poly-p-17 1384 104 79.4 875 104 65.4
k-path-n-13 937 43 32.1 450 43 22.9
k-path-p-20 1358 61 45.3 645 61 32.0
k-ph-n-21 11131 12 9.7 5347 12 6.5
k-ph-p-20 10444 12 9.7 5067 12 6.4

toilet-a-06-01.11 227 6 3.9 84 6 1.8
toilet-a-06-01.12 247 6 3.9 92 6 1.8
toilet-c-10-05.10 805 4 1.2 498 4 0.5
toilet-c-10-05.12 965 4 1.2 610 4 0.5
toilet-g-15-01.2 80 4 3.2 7 4 1.3
toilet-g-20-01.2 106 5 4.0 8 5 1.7
TOILET7.1.iv.13 400 3 2.2 216 3 1.5
TOILET7.1.iv.14 431 3 2.2 234 3 1.5
TOILET10.1.iv.20 855 4 3.0 457 4 2.0
TOILET16.1.iv.32 2,133 4 3.0 1,117 4 2.0

tree-exa10-10 21 10 10.0 4 2 2.0
tree-exa10-15 31 15 15.0 4 2 2.0
tree-exa10-20 41 20 20.0 4 2 2.0
tree-exa10-25 51 25 25.0 4 2 2.0
tree-exa10-30 61 30 30.0 4 2 2.0

Table 2.The effect of tree-reconstruction over the structure of the syntactic tree

38

and

e2 e4 e6 e8

a13 e1

a14

e9

e18
-9 (UNIT)

-2,-9

2,9,-18
-9,18

-13,-14,-18 (UNIT)
13,14,18 (UNIT)

13,-14,-18 (UNIT)
-13,14,-18 (UNIT)

e22 -2,1

1,-22
2,-1,22
-2,-22

-22 (UNIT)

a13 e3

a14

e10

e15
-10 (UNIT)

-4,-10

4,10,-15
-10,15

-13,-14,-15 (UNIT)
13,14,-15 (UNIT)
13,-14,15 (UNIT)
-13,14,-15 (UNIT)

e19 -4,3

3,-19
4,-3,19
-4,-19

-19 (UNIT)

a13 e5

a14

e11

e16
-11 (UNIT)

-6,-11

6,11,-16
-11,16

-13,-14,-16 (UNIT)
13,14,-16 (UNIT)
13,-14,-16 (UNIT)
-13,14,16 (UNIT)

e20 -6,5

5,-20
6,-5,20
-6,-20

-20 (UNIT)

a13 e7

a14

e12

e17
-12 (UNIT)

-8,-12

8,12,-17
-12,17

-13,-14,17 (UNIT)
13,14,-17 (UNIT)
13,-14,-17 (UNIT)
-13,14,-17 (UNIT)

e21 -8,7

7,-21
8,-7,21
-8,-21

-21 (UNIT)

Fig. 7.The reconstructed tree for the instance “toilet-g-04-01”

An intuitive way to get the feeling of these effects is to take a look at some tree re-
constructed from real-world problems. As we said in Section 4.1,sKizzo is indeed able
to produce a textual representation for such trees that can be later on graphically ren-
dered by suited programs (such usgraphviz). Unfortunately, the trees of all non-trivial
instances are too big to be fully represented while keeping readable fonts for clauses and
variables (sometimes, they are even too big to be rendered at all). However, the smallest
instances fit within our space limitations and retain some interesting features. For ex-
ample, Figure 7 depicts the reconstructed three of the small “toilet-g-04-01” instance.
On the other hand, we can give up the requirement of a complete and readable repre-

and

e596 e595 e594 e593 e592 a616 a616 a615 a615 a614 a614 a613 a613

e591 a620 a620

e590

e589 a605 a605

e588 a604 a604

e587 a603 a603

e586 a602 a602

e585

e584 a615 a615 a610 a610 e1034

e583 a614 a614 a609 a609 e990 e1015 e1025

e582 a613 a613 a608 a608 e985 e1006 1

a612 a612 a611 a607 a607 e980 e997 1

a608

e888

2

a608

e890

3

a610

a609

a608

a607

a606

a605

a604

a603

a602

a601

a600

a599

a598

a597

e626

e625

e624

e623

e631

e630

e629

e628

e636

e635

e634

e633

e641

e640

e639

e638

e646

e645

e644

e643

e651

e650

e649

e648

e656

e655

e654

e653

e661

e660

e659

e658

e666

e665

e664

e663

e671

e670

e669

e668

e676

e675

e674

e673

e681

e680

e679

e678

e686

e685

e684

e683

e691

e690

e689

e688

e696

e695

e694

e693

e701

e700

e699

e698

e706

e705

e704

e703

e711

e710

e709

e708

e716

e715

e714

e713

e721

e720

e719

e718

e726

e725

e724

e723

e731

e730

e729

e728

e736

e735

e734

e733

e741

e740

e739

e738

e746

e745

e744

e743

e751

e750

e749

e748

e756

e755

e754

e753

e761

e760

e759

e758

e766

e765

e764

e763

e771

e770

e769

e768

e776

e775

e774

e773

e781

e780

e779

e778

e786

e785

e784

e783

e791

e790

e789

e788

e796

e795

e794

e793

e801

e800

e799

e798

e806

e805

e804

e803

e811

e810

e809

e808

e816

e815

e814

e813

e821

e820

e819

e818

e1043

e1044 e1870

e1045 e1664

e1046 e1458

e1047 e1058 e1252

e1048 e1055 1

e1049 e1052 1

e1050 e1051 1

2 2

e1053 e1054 1

2 2

e1056 e1057 1

2 2

e1059 1

e1060 e1083 e1166

e1061 e1072 1

e1062 e1069 1

e1063 e1066 1

e1064 e1065 1

2 2

e1067 e1068 1

2 2

e1070 e1071 1

2 2

e1073 e1080 1

e1074 e1077 1

e1075 e1076 1

2 2

e1078 e1079 1

2 2

e1081 e1082 1

2 2

e1084 e1146 1

e1085 e1126 1

e1086 e1106 1

e1087 1

e1088 e1100

e1089 e1094

e1090 e1091 1

2 e1092 e1093 1

2 2

e1095 1

e1096 e1097 1

2 e1098 e1099 1

2 2

e1101 1

e1102 e1103 1

2 e1104 e1105 1

2 2

e1107 1

e1108 e1120

e1109 e1114

e1110 e1111 1

2 e1112 e1113 1

2 2

e1115 1

e1116 e1117 1

2 e1118 e1119 1

2 2

e1121 1

e1122 e1123 1

2 e1124 e1125 1

2 2

e1127 1

e1128 e1140

e1129 e1134

e1130 e1131 1

2 e1132 e1133 1

2 2

e1135 1

e1136 e1137 1

2 e1138 e1139 1

2 2

e1141 1

e1142 e1143 1

2 e1144 e1145 1

2 2

e1147 1

e1148 e1160

e1149 e1154

e1150 e1151 1

2 e1152 e1153 1

2 2

e1155 1

e1156 e1157 1

2 e1158 e1159 1

2 2

e1161 1

e1162 e1163 1

2 e1164 e1165 1

2 2

e1167 e1190 1

e1168 e1179 1

e1169 e1176 1

e1170 e1173 1

e1171 e1172 1

2 2

e1174 e1175 1

2 2

e1177 e1178 1

2 2

e1180 e1187 1

e1181 e1184 1

e1182 e1183 1

2 2

e1185 e1186 1

2 2

e1188 e1189 1

2 2

e1191 e1232 1

e1192 e1212 1

e1193 1

e1194 e1206

e1195 e1200

e1196 e1197 1

2 e1198 e1199 1

2 2

e1201 1

e1202 e1203 1

2 e1204 e1205 1

2 2

e1207 1

e1208 e1209 1

2 e1210 e1211 1

2 2

e1213 1

e1214 e1226

e1215 e1220

e1216 e1217 1

2 e1218 e1219 1

2 2

e1221 1

e1222 e1223 1

2 e1224 e1225 1

2 2

e1227 1

e1228 e1229 1

2 e1230 e1231 1

2 2

e1233 1

e1234 e1246

e1235 e1240

e1236 e1237 1

2 e1238 e1239 1

2 2

e1241 1

e1242 e1243 1

2 e1244 e1245 1

2 2

e1247 1

e1248 e1249 1

2 e1250 e1251 1

2 2

e1253 e1264 1

e1254 e1261 1

e1255 e1258 1

e1256 e1257 1

2 2

e1259 e1260 1

2 2

e1262 e1263 1

2 2

e1265 1

e1266 e1289 e1372

e1267 e1278 1

e1268 e1275 1

e1269 e1272 1

e1270 e1271 1

2 2

e1273 e1274 1

2 2

e1276 e1277 1

2 2

e1279 e1286 1

e1280 e1283 1

e1281 e1282 1

2 2

e1284 e1285 1

2 2

e1287 e1288 1

2 2

e1290 e1352 1

e1291 e1332 1

e1292 e1312 1

e1293 1

e1294 e1306

e1295 e1300

e1296 e1297 1

2 e1298 e1299 1

2 2

e1301 1

e1302 e1303 1

2 e1304 e1305 1

2 2

e1307 1

e1308 e1309 1

2 e1310 e1311 1

2 2

e1313 1

e1314 e1326

e1315 e1320

e1316 e1317 1

2 e1318 e1319 1

2 2

e1321 1

e1322 e1323 1

2 e1324 e1325 1

2 2

e1327 1

e1328 e1329 1

2 e1330 e1331 1

2 2

e1333 1

e1334 e1346

e1335 e1340

e1336 e1337 1

2 e1338 e1339 1

2 2

e1341 1

e1342 e1343 1

2 e1344 e1345 1

2 2

e1347 1

e1348 e1349 1

2 e1350 e1351 1

2 2

e1353 1

e1354 e1366

e1355 e1360

e1356 e1357 1

2 e1358 e1359 1

2 2

e1361 1

e1362 e1363 1

2 e1364 e1365 1

2 2

e1367 1

e1368 e1369 1

2 e1370 e1371 1

2 2

e1373 e1396 1

e1374 e1385 1

e1375 e1382 1

e1376 e1379 1

e1377 e1378 1

2 2

e1380 e1381 1

2 2

e1383 e1384 1

2 2

e1386 e1393 1

e1387 e1390 1

e1388 e1389 1

2 2

e1391 e1392 1

2 2

e1394 e1395 1

2 2

e1397 e1438 1

e1398 e1418 1

e1399 1

e1400 e1412

e1401 e1406

e1402 e1403 1

2 e1404 e1405 1

2 2

e1407 1

e1408 e1409 1

2 e1410 e1411 1

2 2

e1413 1

e1414 e1415 1

2 e1416 e1417 1

2 2

e1419 1

e1420 e1432

e1421 e1426

e1422 e1423 1

2 e1424 e1425 1

2 2

e1427 1

e1428 e1429 1

2 e1430 e1431 1

2 2

e1433 1

e1434 e1435 1

2 e1436 e1437 1

2 2

e1439 1

e1440 e1452

e1441 e1446

e1442 e1443 1

2 e1444 e1445 1

2 2

e1447 1

e1448 e1449 1

2 e1450 e1451 1

2 2

e1453 1

e1454 e1455 1

2 e1456 e1457 1

2 2

e1459 e1470 1

e1460 e1467 1

e1461 e1464 1

e1462 e1463 1

2 2

e1465 e1466 1

2 2

e1468 e1469 1

2 2

e1471 1

e1472 e1495 e1578

e1473 e1484 1

e1474 e1481 1

e1475 e1478 1

e1476 e1477 1

2 2

e1479 e1480 1

2 2

e1482 e1483 1

2 2

e1485 e1492 1

e1486 e1489 1

e1487 e1488 1

2 2

e1490 e1491 1

2 2

e1493 e1494 1

2 2

e1496 e1558 1

e1497 e1538 1

e1498 e1518 1

e1499 1

e1500 e1512

e1501 e1506

e1502 e1503 1

2 e1504 e1505 1

2 2

e1507 1

e1508 e1509 1

2 e1510 e1511 1

2 2

e1513 1

e1514 e1515 1

2 e1516 e1517 1

2 2

e1519 1

e1520 e1532

e1521 e1526

e1522 e1523 1

2 e1524 e1525 1

2 2

e1527 1

e1528 e1529 1

2 e1530 e1531 1

2 2

e1533 1

e1534 e1535 1

2 e1536 e1537 1

2 2

e1539 1

e1540 e1552

e1541 e1546

e1542 e1543 1

2 e1544 e1545 1

2 2

e1547 1

e1548 e1549 1

2 e1550 e1551 1

2 2

e1553 1

e1554 e1555 1

2 e1556 e1557 1

2 2

e1559 1

e1560 e1572

e1561 e1566

e1562 e1563 1

2 e1564 e1565 1

2 2

e1567 1

e1568 e1569 1

2 e1570 e1571 1

2 2

e1573 1

e1574 e1575 1

2 e1576 e1577 1

2 2

e1579 e1602 1

e1580 e1591 1

e1581 e1588 1

e1582 e1585 1

e1583 e1584 1

2 2

e1586 e1587 1

2 2

e1589 e1590 1

2 2

e1592 e1599 1

e1593 e1596 1

e1594 e1595 1

2 2

e1597 e1598 1

2 2

e1600 e1601 1

2 2

e1603 e1644 1

e1604 e1624 1

e1605 1

e1606 e1618

e1607 e1612

e1608 e1609 1

2 e1610 e1611 1

2 2

e1613 1

e1614 e1615 1

2 e1616 e1617 1

2 2

e1619 1

e1620 e1621 1

2 e1622 e1623 1

2 2

e1625 1

e1626 e1638

e1627 e1632

e1628 e1629 1

2 e1630 e1631 1

2 2

e1633 1

e1634 e1635 1

2 e1636 e1637 1

2 2

e1639 1

e1640 e1641 1

2 e1642 e1643 1

2 2

e1645 1

e1646 e1658

e1647 e1652

e1648 e1649 1

2 e1650 e1651 1

2 2

e1653 1

e1654 e1655 1

2 e1656 e1657 1

2 2

e1659 1

e1660 e1661 1

2 e1662 e1663 1

2 2

e1665 e1676 1

e1666 e1673 1

e1667 e1670 1

e1668 e1669 1

2 2

e1671 e1672 1

2 2

e1674 e1675 1

2 2

e1677 1

e1678 e1701 e1784

e1679 e1690 1

e1680 e1687 1

e1681 e1684 1

e1682 e1683 1

2 2

e1685 e1686 1

2 2

e1688 e1689 1

2 2

e1691 e1698 1

e1692 e1695 1

e1693 e1694 1

2 2

e1696 e1697 1

2 2

e1699 e1700 1

2 2

e1702 e1764 1

e1703 e1744 1

e1704 e1724 1

e1705 1

e1706 e1718

e1707 e1712

e1708 e1709 1

2 e1710 e1711 1

2 2

e1713 1

e1714 e1715 1

2 e1716 e1717 1

2 2

e1719 1

e1720 e1721 1

2 e1722 e1723 1

2 2

e1725 1

e1726 e1738

e1727 e1732

e1728 e1729 1

2 e1730 e1731 1

2 2

e1733 1

e1734 e1735 1

2 e1736 e1737 1

2 2

e1739 1

e1740 e1741 1

2 e1742 e1743 1

2 2

e1745 1

e1746 e1758

e1747 e1752

e1748 e1749 1

2 e1750 e1751 1

2 2

e1753 1

e1754 e1755 1

2 e1756 e1757 1

2 2

e1759 1

e1760 e1761 1

2 e1762 e1763 1

2 2

e1765 1

e1766 e1778

e1767 e1772

e1768 e1769 1

2 e1770 e1771 1

2 2

e1773 1

e1774 e1775 1

2 e1776 e1777 1

2 2

e1779 1

e1780 e1781 1

2 e1782 e1783 1

2 2

e1785 e1808 1

e1786 e1797 1

e1787 e1794 1

e1788 e1791 1

e1789 e1790 1

2 2

e1792 e1793 1

2 2

e1795 e1796 1

2 2

e1798 e1805 1

e1799 e1802 1

e1800 e1801 1

2 2

e1803 e1804 1

2 2

e1806 e1807 1

2 2

e1809 e1850 1

e1810 e1830 1

e1811 1

e1812 e1824

e1813 e1818

e1814 e1815 1

2 e1816 e1817 1

2 2

e1819 1

e1820 e1821 1

2 e1822 e1823 1

2 2

e1825 1

e1826 e1827 1

2 e1828 e1829 1

2 2

e1831 1

e1832 e1844

e1833 e1838

e1834 e1835 1

2 e1836 e1837 1

2 2

e1839 1

e1840 e1841 1

2 e1842 e1843 1

2 2

e1845 1

e1846 e1847 1

2 e1848 e1849 1

2 2

e1851 1

e1852 e1864

e1853 e1858

e1854 e1855 1

2 e1856 e1857 1

2 2

e1859 1

e1860 e1861 1

2 e1862 e1863 1

2 2

e1865 1

e1866 e1867 1

2 e1868 e1869 1

2 2

e1871 1

e1872 e3214

e1873 e2876

e1874 e2445

e1875 e2086

e1876 e2015

e1877 e1942 e1945

e1878 e1931 1

e1879 e1906 1

e1880 e1881 1

3 e1882 2

e1883 e1901 1

e1884 e1896 1

e1885 e1891 1

e1886 1

e1887 e1889 1

e1888 1

3

e1890 1

2

e1892 e1894 1

e1893 1

3

e1895 1

2

e1897 e1899 1

e1898 1

3

e1900 1

2

e1902 e1904 1

e1903 1

3

e1905 1

2

e1907 2

e1908 e1926 1

e1909 e1921 1

e1910 e1916 1

e1911 1

e1912 e1914 1

e1913 1

3

e1915 1

2

e1917 e1919 1

e1918 1

3

e1920 1

2

e1922 e1924 1

e1923 1

3

e1925 1

2

e1927 e1929 1

e1928 1

3

e1930 1

2

e1932 e1939 1

e1933 e1936 1

e1934 e1935 1

2 2

e1937 e1938 1

2 2

e1940 e1941 1

2 2

e1943 e1944 1

2 2

e1946 e2012 1

e1947 e2001 1

e1948 e1975 1

e1949 e1950 1

3 e1951 2

e1952 e1970 1

e1953 e1965 1

e1954 e1960 1

e1955 1

e1956 e1958 1

e1957 1

3

e1959 1

2

e1961 e1963 1

e1962 1

3

e1964 1

2

e1966 e1968 1

e1967 1

3

e1969 1

2

e1971 e1973 1

e1972 1

3

e1974 1

2

e1976 e2000 1

e1977 e1995 1

e1978 e1990 1

e1979 e1985 1

e1980 1

e1981 e1983 1

e1982 1

3

e1984 1

2

e1986 e1988 1

e1987 1

3

e1989 1

2

e1991 e1993 1

e1992 1

3

e1994 1

2

e1996 e1998 1

e1997 1

3

e1999 1

2

3

e2002 e2009 1

e2003 e2006 1

e2004 e2005 1

2 2

e2007 e2008 1

2 2

e2010 e2011 1

2 2

e2013 e2014 1

2 2

e2016 e2083 1

e2017 e2072 1

e2018 e2045 1

e2019 e2020 1

3 e2021 2

e2022 e2040 1

e2023 e2035 1

e2024 e2030 1

e2025 1

e2026 e2028 1

e2027 1

3

e2029 1

2

e2031 e2033 1

e2032 1

3

e2034 1

2

e2036 e2038 1

e2037 1

3

e2039 1

2

e2041 e2043 1

e2042 1

3

e2044 1

2

e2046 e2070 1

e2047 e2065 1

e2048 e2060 1

e2049 e2055 1

e2050 1

e2051 e2053 1

e2052 1

3

e2054 1

2

e2056 e2058 1

e2057 1

3

e2059 1

2

e2061 e2063 1

e2062 1

3

e2064 1

2

e2066 e2068 1

e2067 1

3

e2069 1

2

e2071 2

3

e2073 e2080 1

e2074 e2077 1

e2075 e2076 1

2 2

e2078 e2079 1

2 2

e2081 e2082 1

2 2

e2084 e2085 1

2 2

e2087 1

e2088 e2302

e2089 e2155 e2161

e2090 e2144 1

e2091 e2119 1

e2092 e2093 1

3 e2094 e2118 1

e2095 e2113 1

e2096 e2108 1

e2097 e2103 1

e2098 1

e2099 e2101 1

e2100 1

3

e2102 1

2

e2104 e2106 1

e2105 1

3

e2107 1

2

e2109 e2111 1

e2110 1

3

e2112 1

2

e2114 e2116 1

e2115 1

3

e2117 1

2

3

e2120 2

e2121 e2139 1

e2122 e2134 1

e2123 e2129 1

e2124 1

e2125 e2127 1

e2126 1

3

e2128 1

2

e2130 e2132 1

e2131 1

3

e2133 1

2

e2135 e2137 1

e2136 1

3

e2138 1

2

e2140 e2142 1

e2141 1

3

e2143 1

2

e2145 e2152 1

e2146 e2149 1

e2147 e2148 1

2 2

e2150 e2151 1

2 2

e2153 e2154 1

2 2

e2156 1

e2157 e2158 1

2 e2159 e2160 1

2 2

e2162 1

e2163 e2230 e2236

e2164 e2219 1

e2165 e2193 1

e2166 e2167 1

3 e2168 e2192 1

e2169 e2187 1

e2170 e2182 1

e2171 e2177 1

e2172 1

e2173 e2175 1

e2174 1

3

e2176 1

2

e2178 e2180 1

e2179 1

3

e2181 1

2

e2183 e2185 1

e2184 1

3

e2186 1

2

e2188 e2190 1

e2189 1

3

e2191 1

2

3

e2194 e2218 1

e2195 e2213 1

e2196 e2208 1

e2197 e2203 1

e2198 1

e2199 e2201 1

e2200 1

3

e2202 1

2

e2204 e2206 1

e2205 1

3

e2207 1

2

e2209 e2211 1

e2210 1

3

e2212 1

2

e2214 e2216 1

e2215 1

3

e2217 1

2

3

e2220 e2227 1

e2221 e2224 1

e2222 e2223 1

2 2

e2225 e2226 1

2 2

e2228 e2229 1

2 2

e2231 1

e2232 e2233 1

2 e2234 e2235 1

2 2

e2237 2

e2238 e2291 1

e2239 e2266 1

e2240 e2241 1

3 e2242 2

e2243 e2261 1

e2244 e2256 1

e2245 e2251 1

e2246 1

e2247 e2249 1

e2248 1

3

e2250 1

2

e2252 e2254 1

e2253 1

3

e2255 1

2

e2257 e2259 1

e2258 1

3

e2260 1

2

e2262 e2264 1

e2263 1

3

e2265 1

2

e2267 2

e2268 e2286 1

e2269 e2281 1

e2270 e2276 1

e2271 1

e2272 e2274 1

e2273 1

3

e2275 1

2

e2277 e2279 1

e2278 1

3

e2280 1

2

e2282 e2284 1

e2283 1

3

e2285 1

2

e2287 e2289 1

e2288 1

3

e2290 1

2

e2292 e2299 1

e2293 e2296 1

e2294 e2295 1

2 2

e2297 e2298 1

2 2

e2300 e2301 1

2 2

e2303 1

e2304 e2372 e2378

e2305 e2361 1

e2306 e2334 1

e2307 e2308 1

3 e2309 e2333 1

e2310 e2328 1

e2311 e2323 1

e2312 e2318 1

e2313 1

e2314 e2316 1

e2315 1

3

e2317 1

2

e2319 e2321 1

e2320 1

3

e2322 1

2

e2324 e2326 1

e2325 1

3

e2327 1

2

e2329 e2331 1

e2330 1

3

e2332 1

2

3

e2335 e2359 1

e2336 e2354 1

e2337 e2349 1

e2338 e2344 1

e2339 1

e2340 e2342 1

e2341 1

3

e2343 1

2

e2345 e2347 1

e2346 1

3

e2348 1

2

e2350 e2352 1

e2351 1

3

e2353 1

2

e2355 e2357 1

e2356 1

3

e2358 1

2

e2360 2

3

e2362 e2369 1

e2363 e2366 1

e2364 e2365 1

2 2

e2367 e2368 1

2 2

e2370 e2371 1

2 2

e2373 1

e2374 e2375 1

2 e2376 e2377 1

2 2

e2379 2

e2380 e2434 1

e2381 e2408 1

e2382 e2383 1

3 e2384 2

e2385 e2403 1

e2386 e2398 1

e2387 e2393 1

e2388 1

e2389 e2391 1

e2390 1

3

e2392 1

2

e2394 e2396 1

e2395 1

3

e2397 1

2

e2399 e2401 1

e2400 1

3

e2402 1

2

e2404 e2406 1

e2405 1

3

e2407 1

2

e2409 e2433 1

e2410 e2428 1

e2411 e2423 1

e2412 e2418 1

e2413 1

e2414 e2416 1

e2415 1

3

e2417 1

2

e2419 e2421 1

e2420 1

3

e2422 1

2

e2424 e2426 1

e2425 1

3

e2427 1

2

e2429 e2431 1

e2430 1

3

e2432 1

2

3

e2435 e2442 1

e2436 e2439 1

e2437 e2438 1

2 2

e2440 e2441 1

2 2

e2443 e2444 1

2 2

e2446 1

e2447 e2664

e2448 e2515 e2521

e2449 e2504 1

e2450 e2479 1

e2451 e2452 1

3 e2453 e2477 1

e2454 e2472 1

e2455 e2467 1

e2456 e2462 1

e2457 1

e2458 e2460 1

e2459 1

3

e2461 1

2

e2463 e2465 1

e2464 1

3

e2466 1

2

e2468 e2470 1

e2469 1

3

e2471 1

2

e2473 e2475 1

e2474 1

3

e2476 1

2

e2478 2

3

e2480 2

e2481 e2499 1

e2482 e2494 1

e2483 e2489 1

e2484 1

e2485 e2487 1

e2486 1

3

e2488 1

2

e2490 e2492 1

e2491 1

3

e2493 1

2

e2495 e2497 1

e2496 1

3

e2498 1

2

e2500 e2502 1

e2501 1

3

e2503 1

2

e2505 e2512 1

e2506 e2509 1

e2507 e2508 1

2 2

e2510 e2511 1

2 2

e2513 e2514 1

2 2

e2516 1

e2517 e2518 1

2 e2519 e2520 1

2 2

e2522 1

e2523 e2591 e2597

e2524 e2580 1

e2525 e2554 1

e2526 e2527 1

3 e2528 e2552 1

e2529 e2547 1

e2530 e2542 1

e2531 e2537 1

e2532 1

e2533 e2535 1

e2534 1

3

e2536 1

2

e2538 e2540 1

e2539 1

3

e2541 1

2

e2543 e2545 1

e2544 1

3

e2546 1

2

e2548 e2550 1

e2549 1

3

e2551 1

2

e2553 2

3

e2555 e2579 1

e2556 e2574 1

e2557 e2569 1

e2558 e2564 1

e2559 1

e2560 e2562 1

e2561 1

3

e2563 1

2

e2565 e2567 1

e2566 1

3

e2568 1

2

e2570 e2572 1

e2571 1

3

e2573 1

2

e2575 e2577 1

e2576 1

3

e2578 1

2

3

e2581 e2588 1

e2582 e2585 1

e2583 e2584 1

2 2

e2586 e2587 1

2 2

e2589 e2590 1

2 2

e2592 1

e2593 e2594 1

2 e2595 e2596 1

2 2

e2598 2

e2599 e2653 1

e2600 e2628 1

e2601 e2602 1

3 e2603 e2627 1

e2604 e2622 1

e2605 e2617 1

e2606 e2612 1

e2607 1

e2608 e2610 1

e2609 1

3

e2611 1

2

e2613 e2615 1

e2614 1

3

e2616 1

2

e2618 e2620 1

e2619 1

3

e2621 1

2

e2623 e2625 1

e2624 1

3

e2626 1

2

3

e2629 2

e2630 e2648 1

e2631 e2643 1

e2632 e2638 1

e2633 1

e2634 e2636 1

e2635 1

3

e2637 1

2

e2639 e2641 1

e2640 1

3

e2642 1

2

e2644 e2646 1

e2645 1

3

e2647 1

2

e2649 e2651 1

e2650 1

3

e2652 1

2

e2654 e2661 1

e2655 e2658 1

e2656 e2657 1

2 2

e2659 e2660 1

2 2

e2662 e2663 1

2 2

e2665 1

e2666 e2810

e2667 e2736 e2742

e2668 e2725 1

e2669 e2698 1

e2670 e2671 1

3 e2672 e2696 1

e2673 e2691 1

e2674 e2686 1

e2675 e2681 1

e2676 1

e2677 e2679 1

e2678 1

3

e2680 1

2

e2682 e2684 1

e2683 1

3

e2685 1

2

e2687 e2689 1

e2688 1

3

e2690 1

2

e2692 e2694 1

e2693 1

3

e2695 1

2

e2697 2

3

e2699 e2723 1

e2700 e2718 1

e2701 e2713 1

e2702 e2708 1

e2703 1

e2704 e2706 1

e2705 1

3

e2707 1

2

e2709 e2711 1

e2710 1

3

e2712 1

2

e2714 e2716 1

e2715 1

3

e2717 1

2

e2719 e2721 1

e2720 1

3

e2722 1

2

e2724 2

3

e2726 e2733 1

e2727 e2730 1

e2728 e2729 1

2 2

e2731 e2732 1

2 2

e2734 e2735 1

2 2

e2737 1

e2738 e2739 1

2 e2740 e2741 1

2 2

e2743 2

e2744 e2799 1

e2745 e2773 1

e2746 e2747 1

3 e2748 e2772 1

e2749 e2767 1

e2750 e2762 1

e2751 e2757 1

e2752 1

e2753 e2755 1

e2754 1

3

e2756 1

2

e2758 e2760 1

e2759 1

3

e2761 1

2

e2763 e2765 1

e2764 1

3

e2766 1

2

e2768 e2770 1

e2769 1

3

e2771 1

2

3

e2774 e2798 1

e2775 e2793 1

e2776 e2788 1

e2777 e2783 1

e2778 1

e2779 e2781 1

e2780 1

3

e2782 1

2

e2784 e2786 1

e2785 1

3

e2787 1

2

e2789 e2791 1

e2790 1

3

e2792 1

2

e2794 e2796 1

e2795 1

3

e2797 1

2

3

e2800 e2807 1

e2801 e2804 1

e2802 e2803 1

2 2

e2805 e2806 1

2 2

e2808 e2809 1

2 2

e2811 2

e2812 e2865 1

e2813 e2840 1

e2814 e2815 1

3 e2816 2

e2817 e2835 1

e2818 e2830 1

e2819 e2825 1

e2820 1

e2821 e2823 1

e2822 1

3

e2824 1

2

e2826 e2828 1

e2827 1

3

e2829 1

2

e2831 e2833 1

e2832 1

3

e2834 1

2

e2836 e2838 1

e2837 1

3

e2839 1

2

e2841 2

e2842 e2860 1

e2843 e2855 1

e2844 e2850 1

e2845 1

e2846 e2848 1

e2847 1

3

e2849 1

2

e2851 e2853 1

e2852 1

3

e2854 1

2

e2856 e2858 1

e2857 1

3

e2859 1

2

e2861 e2863 1

e2862 1

3

e2864 1

2

e2866 e2873 1

e2867 e2870 1

e2868 e2869 1

2 2

e2871 e2872 1

2 2

e2874 e2875 1

2 2

e2877 1

e2878 e3011

e2879 e2944 1

e2880 e2933 1

e2881 e2908 1

e2882 e2883 1

3 e2884 2

e2885 e2903 1

e2886 e2898 1

e2887 e2893 1

e2888 1

e2889 e2891 1

e2890 1

3

e2892 1

2

e2894 e2896 1

e2895 1

3

e2897 1

2

e2899 e2901 1

e2900 1

3

e2902 1

2

e2904 e2906 1

e2905 1

3

e2907 1

2

e2909 2

e2910 e2928 1

e2911 e2923 1

e2912 e2918 1

e2913 1

e2914 e2916 1

e2915 1

3

e2917 1

2

e2919 e2921 1

e2920 1

3

e2922 1

2

e2924 e2926 1

e2925 1

3

e2927 1

2

e2929 e2931 1

e2930 1

3

e2932 1

2

e2934 e2941 1

e2935 e2938 1

e2936 e2937 1

2 2

e2939 e2940 1

2 2

e2942 e2943 1

2 2

e2945 2

e2946 e3000 1

e2947 e2974 1

e2948 e2949 1

3 e2950 2

e2951 e2969 1

e2952 e2964 1

e2953 e2959 1

e2954 1

e2955 e2957 1

e2956 1

3

e2958 1

2

e2960 e2962 1

e2961 1

3

e2963 1

2

e2965 e2967 1

e2966 1

3

e2968 1

2

e2970 e2972 1

e2971 1

3

e2973 1

2

e2975 e2999 1

e2976 e2994 1

e2977 e2989 1

e2978 e2984 1

e2979 1

e2980 e2982 1

e2981 1

3

e2983 1

2

e2985 e2987 1

e2986 1

3

e2988 1

2

e2990 e2992 1

e2991 1

3

e2993 1

2

e2995 e2997 1

e2996 1

3

e2998 1

2

3

e3001 e3008 1

e3002 e3005 1

e3003 e3004 1

2 2

e3006 e3007 1

2 2

e3009 e3010 1

2 2

e3012 1

e3013 e3079 1

e3014 e3068 1

e3015 e3043 1

e3016 e3017 1

3 e3018 e3042 1

e3019 e3037 1

e3020 e3032 1

e3021 e3027 1

e3022 1

e3023 e3025 1

e3024 1

3

e3026 1

2

e3028 e3030 1

e3029 1

3

e3031 1

2

e3033 e3035 1

e3034 1

3

e3036 1

2

e3038 e3040 1

e3039 1

3

e3041 1

2

3

e3044 2

e3045 e3063 1

e3046 e3058 1

e3047 e3053 1

e3048 1

e3049 e3051 1

e3050 1

3

e3052 1

2

e3054 e3056 1

e3055 1

3

e3057 1

2

e3059 e3061 1

e3060 1

3

e3062 1

2

e3064 e3066 1

e3065 1

3

e3067 1

2

e3069 e3076 1

e3070 e3073 1

e3071 e3072 1

2 2

e3074 e3075 1

2 2

e3077 e3078 1

2 2

e3080 1

e3081 e3148 1

e3082 e3137 1

e3083 e3111 1

e3084 e3085 1

3 e3086 e3110 1

e3087 e3105 1

e3088 e3100 1

e3089 e3095 1

e3090 1

e3091 e3093 1

e3092 1

3

e3094 1

2

e3096 e3098 1

e3097 1

3

e3099 1

2

e3101 e3103 1

e3102 1

3

e3104 1

2

e3106 e3108 1

e3107 1

3

e3109 1

2

3

e3112 e3136 1

e3113 e3131 1

e3114 e3126 1

e3115 e3121 1

e3116 1

e3117 e3119 1

e3118 1

3

e3120 1

2

e3122 e3124 1

e3123 1

3

e3125 1

2

e3127 e3129 1

e3128 1

3

e3130 1

2

e3132 e3134 1

e3133 1

3

e3135 1

2

3

e3138 e3145 1

e3139 e3142 1

e3140 e3141 1

2 2

e3143 e3144 1

2 2

e3146 e3147 1

2 2

e3149 2

e3150 e3203 1

e3151 e3178 1

e3152 e3153 1

3 e3154 2

e3155 e3173 1

e3156 e3168 1

e3157 e3163 1

e3158 1

e3159 e3161 1

e3160 1

3

e3162 1

2

e3164 e3166 1

e3165 1

3

e3167 1

2

e3169 e3171 1

e3170 1

3

e3172 1

2

e3174 e3176 1

e3175 1

3

e3177 1

2

e3179 2

e3180 e3198 1

e3181 e3193 1

e3182 e3188 1

e3183 1

e3184 e3186 1

e3185 1

3

e3187 1

2

e3189 e3191 1

e3190 1

3

e3192 1

2

e3194 e3196 1

e3195 1

3

e3197 1

2

e3199 e3201 1

e3200 1

3

e3202 1

2

e3204 e3211 1

e3205 e3208 1

e3206 e3207 1

2 2

e3209 e3210 1

2 2

e3212 e3213 1

2 2

e3215 2

e3216 e3269 1

e3217 e3244 1

e3218 e3219 1

3 e3220 2

e3221 e3239 1

e3222 e3234 1

e3223 e3229 1

e3224 1

e3225 e3227 1

e3226 1

3

e3228 1

2

e3230 e3232 1

e3231 1

3

e3233 1

2

e3235 e3237 1

e3236 1

3

e3238 1

2

e3240 e3242 1

e3241 1

3

e3243 1

2

e3245 2

e3246 e3264 1

e3247 e3259 1

e3248 e3254 1

e3249 1

e3250 e3252 1

e3251 1

3

e3253 1

2

e3255 e3257 1

e3256 1

3

e3258 1

2

e3260 e3262 1

e3261 1

3

e3263 1

2

e3265 e3267 1

e3266 1

3

e3268 1

2

e3270 e3277 1

e3271 e3274 1

e3272 e3273 1

2 2

e3275 e3276 1

2 2

e3278 e3279 1

2 2

a603

a597

e860

e861 2

3

a603

a597

e857

e858 1

2

e981 1

e982 e983 1

2 2

e998 1

e999 e1002 1

e1000 e1001 1

2 2

e1003 e1004 1

2 2

a609

e893

2

a609

e895

3

a604

a598

e867

e868 2

3

a604

a598

e864

e865 1

2

e986 1

e987 e988 1

2 2

e1007 1

e1008 e1011 1

e1009 e1010 1

2 2

e1012 e1013 1

2 2

a610

e898

2

a610

e900

3

a605

a599

e874

e875 2

3

a605

a599

e871

e872 1

2

e991 1

e992 e993 1

2 2

e1016 1

e1017 e1018 1

2 2

e1026 1

e1027 e1030 1

e1028 e1029 1

2 2

e1031 e1032 1

2 2

a611

e903

2

a611

e905

3

a606

a600

e881

e882 2

3

a606

a600

e878

e879 1

2

e1035 1

e1036 e1039 1

e1037 e1038 1

2 2

e1040 e1041 1

2 2

a598

e834

2

a598

e836

3

a599

e839

2

a599

e841

3

a600

e844

2

a600

e846

3

a601

e849

2

a601

e851

3

a610

e949

2

a610

e951

3

a621 a621 a619 a619

a605

e972

2

a605

e974

3

a609

e944

2

a609

e946

3

a620 a620 a618 a618

a604

e967

2

a604

e969

3

a608

e939

2

a608

e941

3

a619 a619 a617 a617

a603

e962

2

a603

e964

3

a607

e934

2

a607

e936

3

a618 a618

a602

e957

2

a602

e959

3

a610

a600

e928

3

a610

a600

e926

2

a609

a599

e923

3

a609

a599

e921

2

a608

a598

e918

3

a608

a598

e916

2

a607

a597

e913

3

a607

a597

e911

2

Fig. 8.The compressed, top-most part of the reconstructed tree for the instance “flipflop-5-c”

39

sentation, and just get the overall picture, such us in Figure 8, where only the top-most
part of a much bigger tree is compactly represented.

To be fair, we have to say that for other classes of instances the results of our recon-
struction are much less impressive than they appear in Table 2. Further investigations
on this topic will be conducted.

The last point we consider here is the relative importance of symbolic reasoning with
respect to all the other machinery withinsKizzo. Table 3 gives a few results that we
now discuss to get the feeling of what happens within Step 4. A few instance for each
family we are interested in are reported, one instance per row. The first three columns
give the symbolic size of the instance (see Section 3.3.2) before and after Step 4 is
executed for the first time, together with the relative variation occurred as an effect
of such execution. The subsequent three columns report similar information for the
ground size of the instances. The last column gives the relative amount of time spent in
(the first application of) symbolic reasoning. When this percentage is equal to100%,
the instance is completely solved during Step 4, and subsequent steps are not activated
(when the number of remaining clauses is zero, the instance is satisfiable, otherwise it
is unsatisfiable). We use a dash when completion time is not known (it is beyond 1000
seconds). When this percentage is less than100% it measures the cumulative Step 3 +
Step 4 time against the total running time for the instance. An important point is that
Step 4 is possibly executed several times, according to Algorithm 6. However, we are
only measuring the effects of the very first execution against all the rest.

Consistently with Section 3.4.5, we notice that the ground size of instances is always
reduced, whilst the symbolic size of some of them is increased as an effect of symbolic
reasoning. The reduction ratio for the ground size is quite family-dependent, though
not sensibly instance-depending. Most of the simpler families are completely solved by
symbolic reasoning. Conversely, for more complex instances symbolic reasoning does
not suffices, and in certain cases shows a little effect. For some families (such as “mu-
tex”), the shift from symbolically solvable and unsolvable instances happenswithin the
family, moving from the smallest instances to the medium ones. The symbolic/ground
size rate strongly depends on the structure of the instances, as we expect from the dis-
cussion presented in Section 3.3.1. Within the same family—and for families that grows
according to a clearly parametric instance complexity (“adder”,“counter”,“mutex”,...)—
the logaritm of the number of ground clauses grows roughly linearly with the symbolic
size. Quite often, the number of ground clauses before symbolic reasoning is intractable
(state-of-the-art solvers can afford millions clauses, not billions). Some of them stays
unaffordable even after Step 4, but many undergo a strong reduction of the ground size
(see the “adder” family, for example). Several problems exist that—thought not strongly
reduced during the first execution of Step 4—are hardly simplified during subsequent
ones (not shown in the table).

The overall effect of symbolic reasoning is quite incisive. Further experiments will
investigate how the solving effort is divided among the various modules of the solver,
also taking into account the role of the SAT solver, the time spent in BDD reordering,
and the behavior of the divide-et-impera procedure.

40

Symbolic clauses Ground clauses
Instance Before After Diff. Before After Diff. Symb. time

Adder2-2-c 234 193 -18% 1.0 · 106 5.4 · 105 -46.0% 100%
Adder2-6-s 3,315 2,236 -33% 1.8 · 1012 1.0 · 106 -99.9% 23%
Adder2-8-s 6,060 4,070 -33% 1.0 · 1016 2.2 · 107 -99.9% 14%
Adder2-10-s 9,625 6,447 -33% 5.3 · 1019 4.6 · 108 -99.9% -
adder-10-sat 3,641 3,580 -2% 9.9 · 1021 1.9 · 108 -99.9% -

BLOCKS3i.5.4 2,640 2,814 +7% 4.0 · 104 3.0 · 104 -25.0% 100%
BLOCKS3ii.5.2 1,886 2,095 +11% 2.9 · 104 2.1 · 104 -28.0% 100%
BLOCKS3iii.5 1,226 1,614 +32% 1.9 · 104 1.3 · 104 -32.0% 100%
BLOCKS4i.6.4 10,710 12,355 +15% 1.3 · 106 1.0 · 106 -23.0% 1%
CHAIN12v.13 486 0 -100% 1.8 · 106 0 -100.0% 100%
CHAIN17v.18 861 0 -100% 1.1 · 108 0 -100.0% 100%
CHAIN23v.24 1,443 0 -100% 1.2 · 1010 0 -100.0% 100%

cnt04 321 0 -100% 1.7 · 103 0 -100.0% 100%
cnt04re 397 300 -24% 2.1 · 103 3.2 · 102 -85.0% 25%
cnt08 1,237 0 -100% 6.1 · 104 0 -100.0% 100%

cnt08re 1,309 1,240 -5% 6.5 · 104 1.1 · 104 -83.0% <1%
cnt12 2,505 0 -100% 1.3 · 106 0 -100.0% 100%

cnt12re 2,733 2,820 +3% 1.5 · 106 2.6 · 105 -83.0% <1%
flipflop-9-c 74,066 71,691 -3% 9.4 · 1012 9.2 · 1012 -2.0% 100%
flipflop-10-c 128,245 124,844 -3% 1.3 · 1014 1.3 · 1014 -1.0% 100%
flipflop-11-c 210,674 205,995 -2% 1.7 · 1015 1.7 · 1015 -1.0% 100%

impl04 32 0 -100% 1.4 · 102 0 -100% 100%
impl12 96 0 -100% 3.7 · 104 0 -100% 100%
impl20 160 0 -100% 9.4 · 106 0 -100% 100%

k-branch-n-9 12,923 20,608 +59% 2.1 · 1018 1.6 · 1018 -23.8% 3%
k-branch-p-13 28,676 78,006 +172% 3.7 · 1024 2.9 · 1024 -21.6% 100%

k-d4-n-16 5,133 5,535 +8% 4.2 · 1022 2.4 · 1022 -42.9% 2%
k-d4-p-16 2,959 5,044 +70% 4.7 · 1017 3.1 · 1017 -34.0% 100%
mutex-4-s 362 0 -100% 1.9 · 107 0 -100% 100%
mutex-8-s 834 367 -56% 2.9 · 1012 3.5 · 104 -99.9% 70%
mutex-16-s 1,778 947 -47% 2.6 · 1022 2.4 · 109 -99.9% -

TOILET10.1.iv.20 3,466 3,326 -4% 2.1 · 104 7.4 · 103 -64.8% 55%
TOILET16.1.iv.32 10,495 8,175 -22% 5.6 · 104 8.6 · 103 -84.6% 72%
toilet-a-08-01.11 3,109 1,069 -66% 6.0 · 104 2.7 · 104 -55.0% 3%
toilet-c-10-01.14 1,974 1,874 -5% 7.5 · 103 4.0 · 103 -46.6% 1%
toilet-g-20-01.2 460 0 -100% 1.1 · 103 0 -100.0% 100%

tree-exa2-40 51 1 -100% 5.6 · 1014 1 -100% 100%
tree-exa10-30 58 0 -100% 58 0 -100% 100%

Table 3.The effect of symbolic reasoning over the size of instances, measured as the number of
ground clauses and symbolic clauses before and after Step 4 is executed.

4.4 Performance

As a preliminary performance evaluation, we target some non-random benchmarks
from the QBFLIB, and compare both with the SOTA solver (see Section 4.2) and with
a few among the best real solvers. In the former case, we address a subset of the test

41

Test set SOTA’04 sKizzo
From family instancesSolved Time (sec.) Solved Time (sec.)

adder 8 6 (132.54) 2 (20.18)
blocks 8 8 215.02 7 70.28
chain 8 8 9.25 8 0.45

counter 8 4 (0.05) 6 (1232.29)
flipflop 8 8 3.16 8 81.67
impl 8 8 0.06 8 127.75

jmc-quant 16 6 30.13 6 196.61
k-branch 16 7 (274.93) 9 (994.84)

mutex 7 7 (7.30) 3 (2.31)
szymanski 8 8 (211.20) 2 (1.75)

toilet 8 8 7.75 8 1.23
tree 8 8 4.82 8 0.18

vonN 8 8 16.40 8 16.91

Table 4.Comparison betweensKizzo and the SAT’04 SOTA solver

cases employed in [43], in the latter case we target the families described in Section 4.2
(a wider experimentation can be found at [4]).

Table 4 gives the result of our comparison, and is to be interpreted as follows. Each
row comparessKizzo with the SOTA solver on a specific test-set. Thirteen test-sets
have been considered. Each one is a subset of a family of instances, randomly extracted
from that family. The first two columns give the name of the originating family, and
the number of instances extracted to build the test-set. To perform a fair comparison,
we used the same instances extracted during the QBF evaluation. The values in the
third and fourth columns have been reported from [43]. They represent the number of
instances solved by the SOTA solver, and the cumulative time taken to solve them. The
last two columns give analogous results forsKizzo8. Solving times are parenthesized
when they are not directly comparable (as the two solvers didn’t solve the same number
of instances).

Results are quite encouraging. The SOTA solver solves more instances per family
thansKizzo in only 4 out of 13 cases. Interestingly, the converse also happens: in 2
cases our algorithm solved more instances than the SOTA solver. In the remaining 7
test-cases, the number of instances solved is the same, so we compare running times.
In 4 out of these 7 cases,sKizzo is faster (up to an order of magnitude) than the SOTA.
Conversely, in most of the remaining cases the SOTA solver outperforms our procedure
by an order of magnitude (with the noticeable exception of the “Impl” family, where
the SOTA’s advantage is several orders of magnitude wide).

8 The machines used for experimenting with the two solvers have the same operating systems,
type of processor and amount of pshysical memory, but also have a minor difference. Indeed,
sKizzo has been run on a 2.6Ghz processor, while the SOTA solver has been tested on a
3.2GHz processor. Running times in Table 4 are not normalized, so we would expect a slightly
better performance ofsKizzo should it be tested on the very same machine as the SOTA.

42

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1 1 10 100 1000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Running Time (ms)

sKizzo
quantor
yquaffle

semprop
qube

Fig. 9.Comparison over the “rintanen” group of families

Though very preliminary, this experimentation suggests that difficult instances lay
in different places for the two solvers. This confirms that the reasoning engine ofsKizzo
really diparts from those used in other solvers. The test-cases in whichsKizzo is dra-
matically outperformed indirectly point out how it needs to be improved. In this respect,
a minor exception is the “adder” family, that we thoroughly re-consider later in this sec-
tion with surprising results. Conclusively, the comparison with the SOTA solver on the
test-cases we considered is fairly good, especially if we take into account that the ver-
sion ofsKizzo we employed is a first, unadjusted implementation of a completely new
algorithm.

To directly compare with real solvers, we restrict our attention to the solvers described
in Section 4.2. The representation style we adopt for our experimental results is taken
from [34, 57, 74], where the number of solved instances is plotted against the (non-
cumulative) time taken to solve those instances. So, the y-value of a point in the plot
gives the number of runs that didn’t time-out, each one being timed out after an amount
of time represented by the x-value of the same point.

43

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.1 1 10 100 1000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Running Time (sec)

sKizzo
quantor

semprop
yquaffle

qube

Fig. 10.Comparison over the “ayari” group of families

Figure 9 concerns Rintanen’s benchmarks.sKizzo and Quantor were the only two
solvers to complete the task (apart from one instance that no solver has been able to
decide) within the alloted 1000-second timeout. The performance ofsKizzo is aligned
to that of Quantor—by far the best solver on this group of families. Both solvers sensi-
bly dominates the rest of the competitors. Quantor finishes its task requiring less time
than our algorithm. Interestingly, the instance that contributes the more to this differ-
ence with a surprisingly high solving time (almost one hundred seconds onimpl20) is
one that all the other solvers find to be absolutely trivial. The reason for the poor per-
formance ofsKizzo over theimpl family has been analyzed, and it comes out to be an
idiosyncrasy that can be easily worked-around (it will in future releases).

The results on the Ayari’s benchmarks are reported in Figure 10. This benchmark is
much more difficult than the previous one. Indeed, no solver has been able to solve
even half the instances in the group, except forsKizzo which exactly matches this re-
sult by solving 36 instances out of72, immediately followed by Quantor with35 solved
instances. The performance ofsKizzo is quite satisfactory on this benchmark, espe-
cially if we take into account that some of the instances we didn’t solve are easy for
other solvers. This give important hints on how to address them more efficiently in fu-

44

 0

 2

 4

 6

 8

 10

 0.1 1 10 100 1000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Running Time (sec)

sKizzo
quantor

semprop
yquaffle

Fig. 11.Comparison over all the satisfiable “adder” instances

ture releases.

The good performance obtained in the Ayari benchmarks led us to reconsider some of
the results presented in the comparison with the SOTA solver (Table 4). How is it possi-
ble for sKizzo to perform quite well in the whole benchmark while being dramatically
outperformed in some of the Ayari families in Table 4?

A first simple answer is that many more solvers than the four we consider here
may have contributed to the performance of the SOTA solver. Even if those solvers
didn’t show an outstanding overall performance in isolation, they might have been able
to (very) efficiently solve at least some instances, thus contributing to the remarkable
SOTA performance. A second intriguing answer concerns the role of the random sam-
pling over families of instances. In particular, we are interested in the statistical signifi-
cance of the subset extracted.

To shed a few light over this question, we considered in more detail the “adder” test-
set used in Table 4, which is inherited from the QBF04 solver evaluation. At a closer
look, it results that most instances in that test set areunsatisfiable, even if in the original
family 50% of the instances are SAT. Moreover, one of the two SAT instances chosen
for the test-set is very complex and no solver has been able to conquer it (norsKizzo

45

 0

 10

 20

 30

 40

 50

 0.1 1 10 100 1000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Running Time (sec)

sKizzo
quantor
yquaffle

semprop
qube

Fig. 12.Comparison over all the “counter” instances

did). If we now consider that—empirically—sKizzo finds satisfiable “adder” instances
easier to solve than equal-sized unsatisfiable ones, we have a good explanation for the
phenomenon.

Figure 11 compares9 five solvers on the whole satisfiable subset of the “adder” fam-
ily10. Results are coherent with our analysis.

To conclude this preliminary experimentation, we target the “counters” family of in-
stances. We introduced this family and motivated its relevance in Section 4.2. From our
experimentation, and according to what Biere already noticed in [9], it comes out that
QBF-based model checkingdoesn’toutperform plain SAT-based model checking, at
least on the “counter” instances. Within 1 minute, BMC is able to decide 7-bit-counters
(with both reset and enabled signals modeled), while the QBF solverdecidecan handle
3-bit-counters,qubeandsempropup to 4 bits, and onlyquantormatches the 7 bits re-
sult. sKizzo is just slightly better than the state of the art, with 8-bit solved within60

9 All the solvers have been run on the same 2.6GHz, 1GB machine, with a 1000s. timeout.
10 These instances are by no meanseasy. The five more complex instances resolved bysKizzo

in Figure 11 are 2003-hard (no solver was able to solve them in the QBF03 evaluation). Three
of them have been conquered later on by Quantor.

46

seconds. However, it is also able to solve the all16-element family of counters (with
no enable and no reset signal) in less than5 minutes, and its relative performance gets
more interesting as higher running times are considered. Figure 12 compares our algo-
rithm against four state-of-the art solvers, including quantor, which is the best solver on
this specific family.

5 Related and future work

5.1 Related work

Most work on QBF algorithms aims at extending the successful solving techniques
used in propositional satisfiability to the case of quantified boolean formulas. So, let us
briefly recall those techniques at first.

Successful SAT solvers are refined versions of asearch algorithmthat looks for
models in the space ofpartial truth assignments. They all build on top of the sem-
inal work [24, 25] by Davis, Putnam, Logemann, and Loveland, where a depth-first,
recursive visit of the semantic evaluation tree of the formula [62, 41] is described. This
algorithm, often referred to as DPLL procedure, has been improved in several ways
over the decades (see [22, 36, 29, 67, 77, 3, 35, 48, 52, 8] for specific examples and [5]
for a detailed survey). Many enhancements—such us conflict analysis, failure-driven
assertion, non-chronological backtracking, and learning—arelookbacktechniques (in-
formation is gathered form past search and then conveniently reused). Others - such us
forward checking, forward reasoning and heuristics choices—are lookahead techniques
(information concerning the remaining search space is exploited by ad-hoc exploring
mechanisms to help the main search procedure doing its work efficiently).

The unquestionable result of all these improvements is that SAT solvers are now
regarded as effective tools for solving industrial-scale problems [21], and have been
successfully applied to several domains, such us computer-aided design of integrated
circuits [39, 42], Planning [38], Model Checking for dynamic systems [10], Schedul-
ing [23], Operations Research, and Cryptography [50], just to name a few.

The QBF language is more expressive than PROP, but it is also more complex to de-
cide [73] (PSPACE instead of NP). Problems arising from Temporal Reasoning [70],
Planning [59], Formal Verification [65, 1], Reasoning about Knowledge [55], and two-
player games [31] find a more natural (and possibly exponentially more succinct) rep-
resentation in QBF than in PROP. Hence, the question arises on whether QBF solvers
can inherit and perhaps overcome the popularity (and efficiency) of SAT-based meth-
ods for such applications. The answer mainly depends on the effectiveness of the tools
developed for deciding QBF formulas. Such tools should prove on the field that a way
exists to leverage the augmented expressive power of QBF without suffering too much
of the worstened worst-case complexity.

Currently, most QBF solvers leverage revised versions of techniques that have been
originally introduced for the SAT framework. These techniques range from the ex-
tension of resolution-based reasoning [40] to the employment of lookback enhance-
ments [46], encountering along the way a key contribution by Cadoli, Giovanardi and

47

Schaerf [16] in which the original extension of DPLL to QBFs is presented. Up to a
certain point, the extension of SAT techniques to QBF solvers has been successful.
In the QBF solver evaluation reported in [44], all the competitive QBF solvers (such us
QSAT [60], QSOLVE [27], QUAFFLE [78], QuBE [33], SEMPROP [45]) were search-
based.

Yet, the important question we raised in the introduction remains unanswered. Namely:
can QBF-based reasoning really beat SAT-based reasoning?

Some results [65, 1, 55, 9, 57, 43, 44] suggest that the shift to QBF does not pay off
yet. In one such contribution [9], for example, the way unbounded model checking is
performed via SAT is compared to the way it could be done via QBF. The results of
this preliminary evaluation confirms that current QBF-based model checking may at
most match the results obtained by plain BMC. Moreover, as the examples analyzed
in [9] are very easy for classical BDD-based model checking, some kind of remarkable
improvement may be reasonably expected from alternative QBF solver architectures.

A few alternative solving algorithms for QBF are indeed emerging [43]. Some of
them reverse the order in which quantifiers are considered [9] (bottom-up instead of
top-down), others [57, 32] employ some kind of compact representation for the prob-
lem (usually, OBDD or ZBDD based symbolic representations). Many of them restate
the very goal of the solver: it is no longer a matter ofsearching for a solution, rather an
attempt to directlysolve the instance.

Interestingly, the distinction betweensearchingandsolving is quite old, and—in the
framework of algorithms for existential propositional reasoning (SAT)—traces back to
the two early contributions [24, 25]. Recently, it has been reconsidered from different
perspectives [61, 56, 5]. Well known resolution-based solving techniques (see [13] for
a survey) have received renewed attention, especially when used in conjunction with
compressed representation for clauses [17, 28, 53]. When compared to search-based
algorithms for SAT, these so-calledsymbolicapproaches show a certain strength on
specific classes of instances, but seem to be not competitive in general [56].

Things change in the QBF scenario. Both the idea ofcompressed/symbolicrepre-
sentations, and the shift fromsearchingto solvingseem to be promising [57, 9, 32] as
far as QBF is concerned. Possible reasons for this asymmetry discussed in the litera-
ture are (1) that symbolic representations manage existential and universal quantifiers
in a symmetric way11, whereas search-based procedures have a hard way with the latter
ones, and (2) that QBF problems are more structured and lesscombinatorialin nature
than their propositional counterparts.

11 This is true for the symbolic representations employed so far in the literature. WithinsKizzo,
the technique used to get rid of universal variables strongly differs from the way existential
quantifiers are dealt with. AssKizzo is a quite competitive solver, the prominence of “sym-
metric hypothesis” is weakened.

48

Let us now take a closer look at some of these new algorithms for QBF satisfiability,
starting with the really noticeable case of Quantor [9]. It is a “young” and simple12

algorithm that after one year of improvements13 has over-performed (on non-random
benchmarks) all the well-known search-based algorithms [43]. It does not use com-
pressed representation, and adopt asolvingparadigm. The emphasis is on eliminating
quantifiers from the innermost to the outermost, using q-resolution [40] for existential
quantifiers and expansion for universal ones. A lot of other details (equivalence rea-
soning, subsumption control, estimation of expansion and resolution costs, scheduling
heuristics) contribute to the impressive overall performance of this algorithm.

ZQSAT is an algorithm that uses thesearchingparadigm, but employs a compressed
representation for clauses based upon ZDDs, in the spirit of [17]. It is able to efficiently
solve classes of instances that are known to be hard for non-symbolic DPLL-based
QBF solvers, and is also able to process QBF formulas in NNF (negated normal forms),
which can bring in some cases an exponential benefit (provided suited input formulas
are available). QMRES [57] is another algorithm that exploits ZDDs to symbolically
represent clauses. Rather than performing a DPLL-like search, this algorithm adopts
multi-resolution [17] tosolvethe instance. This yields a quite competitive solver that
has been able to tackle previously unsolved instances during the last QBF solver evalu-
ation [43], resulting particularly efficient over high-alternation, structured instances. In
the same paper [57], a BDD-based solver—called QBDD—is also introduced, which
employ a symbolic quantifier elimination technique and uses BDDs to encode satisfy-
ing assignments. Though both algorithms appear to be more scalable than search-based
ones, QBDD is in general dominated by QMRES.

To conclude, we give a few pointers to contributions that report about the tools and
techniques used bysKizzo. Structure exploitationis a somewhat elusive concept. On
the one hand, the structure of an instance is alwaysimplicitly dealt with (just think of
the way search-based algorithms visit their prefix, or heuristics compute their prefer-
ences). On the other hand, anexplicit exploitation of the QBF structure is rarely if ever
attempted in other approaches. Noticeable exceptions are (1) the QBDD and QMRES
algorithms presented in [57] that exploit theGaifman graphof the matrix to decide a
good variable ordering for the ordered DD used to perform quantifier elimination, (2)
the work presented in [26] to pre-process QBF prefixes and obtain semantically equiv-
alent alternatives with an “optimal” number of quantifier inversions, (3) the generaliza-
tion from CNF to NNF of the normal form used as input language for QBF formulas,
presented in [32], and (4) the notes on tree-like prefixes reported in [9].

The foundational work of Skolem [71], together with the related works of Herbrand
and L̈owenheim (see [15] for an overview of these works), are at the very basis of au-

12 As usual, even if the abstract description of an algorithm is “simple”, implementation details
may be absolutely non-trivial. Practical experience with SAT and QBF solvers suggests that
not only implementation is important, but it can be the main responsible for the performance
edges. For example, most of the reasons for Chaff efficiency are hidden in the code, not in its
abstract description.

13 A preliminary version of Quantor did already participate in the SAT’03 evaluation with limited
success.

49

tomated deduction for expressive logics, and have had the widest possible application.
We here just cite a recent work by Jackson [37] that employ a notion of skolemization
similar to ours.

Forms of reasoning about binary sub-formulas are widely known, and regarded as
an effective pre-processing step in the propositional framework [11, 30, 8]. Our main
source of inspiration for the binary hyper reasoning techniques presented in Section 3.4.3
and 3.4.4 is [2], while the algorithm we use for detecting strongly connected compo-
nents is due to Kosaraju (unpublished) and Sharir [66] and dates back to 1978.

The interest in binary decision diagrams as a tool for manipulating boolean func-
tions traces back to the seminal work by Bryant [12], and is nowadays so wide that en-
tire monographs on the topic exist (see [76] for a comprehensive account on the field).
Their usage in SAT/QBF satisfiability algorithms have been explored at least in [75, 51,
17, 63, 54, 53, 28, 56, 57, 32]. The CUDD package we have used [72] is one of the most
widely known, thought many alternatives do exist (seewww.bdd-portal.org for
further details).

5.2 Discussion

We discuss the differences and similarities between our technique and the other ap-
proaches to QBF satisfiability reported in Section 5.1.

5.2.1 Solving vs. search.We cited in Section 5.1 some empirical results suggesting a
tradeoff between what can be done efficiently bysolving, and what you’d better perform
via search, both in the propositional case and in the QBF framework. Some classes of
formulas have been recognized to clearly fall into one of these two classes. At the same
time, solvers are partitioned between search-based ones (QuBE, SEMPROP, QZSAT,
QSOLVE, etc.) and solving-based ones (Quantor, QMRES, QBDD).

sKizzo behaves differently. It tries to obtain the best of both worlds: first, sim-
plify (or decide, if you can) the instance via state-of-the-art symbolic reasoning tools
(CUDD); then, face the remaining combinatorial core by means of state-of-the-art,
search-based solvers (zCHAFF). The employment of a refutationally incomplete set
of rules in Step 4 is not necessarily a drawback for the algorithm. A positive side-effect
of this limitation is that those inferences that are easy and effective for the symbolic
machinery are left to Step 4. When Step 4 reaches the limits of its deductive power, it
is likely to have extracted acore of the instance which is morecombinatorialin na-
ture. Search techniques have proved to be more effective on such instances, and Step 6
indeed address them by means of search-based methods.

These complementary searching and solving behaviors are deeplyinterconnected
within sKizzo: Step 1 applies a non-symbolic, solution-oriented, pre-processing rea-
soning toolset. Step 4 implements a fully symbolic, refutationally incomplete inference
procedure. Step 6 applies a non-symbolic, ground, search-based, complete decision
method. Finally, Step 5 is itself a search procedure that moves from one node to the
other of its search space through symbolic steps, and then resorts to a ground, search-
based approach (Step 6) whenever possible.

50

5.2.2 The symbolic approach.We have reported about several symbolic/compressed
representations for CNF formulas and/or propositional models. Very few of them con-
cern QBFs. Namely, the search-based solver ZQSAT, and the solving procedures QM-
RES and QBDD.

The representation employed withinsKizzo differs from all of them. Step 3 indeed
exploits the special structure of the propositionally skolemized QBF clauses, i.e. the
fact that clauses in the propositionally skolemized version of a QBF instance are not
randomly scattered. Rather, they are grouped into “clusters”, one for each originating
QBF clause. Consequently, our symbolic representation for clauses is not just a deci-
sion diagram that represent sets of clauses (or sets of assignments), but a much more
articulated data structure. It involves different representation levels for existential and
universal variables, and needs to refer to the syntactic tree of the formula to fully ex-
pand its ground meaning. As a minor note, we observe that our algorithm is currently
the only competitive BDD-based QBF solver, as all the others build on top of a ZBDD-
based representation. As opposite to other symbolic approaches, we also notice that our
representation doesn’t prevent from easily detecting both pure literals and unit clauses.

5.2.3 Structure exploitation. Few solvers attempt to directly leverage the structure
of instances. By contrast,sKizzo confers to the wordstructurea central, many-sided
role: (1) the solver architecture is articulated in several steps and this allows for investi-
gations on how to classify formulas w.r.t. the stage they are solved in14, (2) the recovery
of somehidden syntactic structurefor the formula is the main concern of Step 2, (3)
the data structure used in Steps 4 are themselves organized according to the prefix of
the formula, and (4) the syntactic tree of the formula is used to guide the search during
Step 5.

While all of these topics deserve further attention (and an in-depth comparison with
the techniques presented in [57, 26, 32]), we here limit our attention to the structure re-
covery performed during Step 2. A fascinating consequence of Step 2 is that we loose
the simple notion ofdirection for the prefix (innermost→ outermost or outermost→
innermost), because quantifier alternations no longer show a linear shape. Though in
linearly represented prefixes there is only a partial ordering among quantifiers (as vari-
ables in the same scope are not ordered) the sequence of scopes is still totally ordered.
This total order identifies the two possible directions over the prefix used by most algo-
rithms. When a tree-shaped syntactic structure is used, the set of scopes is only partially
ordered, and no monodimensional notion of direction applies. Even more radically, the
notion of “order among quantifiers” (which is inescapable in all the other solvers) is
simply absent in the reasoning techniques we adopt in Steps 3-4. They indeed abstracts
over the presence of multiple, partially ordered quantifiers, as the only place in which
quantifier alternations do matter is in the symbolically represented (and atomically ma-

14 A more general issue exists about constructing solvers that behave efficiently on QBF formulas
known to belong to restricted sub-classes, “simpler” than general QBFs. See [14].

51

nipulated) sets of ground clauses15. The partial order among scopes re-gain part of its
importance during Step 5.

5.2.4 Divide-et-impera.The decision procedure operated in Step 5 closely resembles
the one used in DPLL-like solvers forQBF . However, what we are managing is not
a QBF formula, but a (symbolically-represented) tree-shaped propositional formula.
As far as splitting over existential variables is concerned, this makes the whole proce-
dure more similar to SAT solvers than toQBF decision procedures. By contrast, when
the split is performed overuniversalvariables, something conceptually different hap-
pens: the instance is partitioned into two completely disjoint sub-formulas, according
to expression (11). The splitting operation is performed symbolically, both on universal
variables and on existential variables, according to expressions (10) and (11). This is
reminiscent of other symbolic approaches to QBF described in Section 5.1.

Unlike most other search-based solvers, the base-case of the procedure is never a
direct decision over trivial sub-formulas; well in advance, either symbolic normalization
or compilation-to-SAT decide every sub-problem. These techniques may thus be seen
as powerful look-ahead tools.

Finally, internal nodes of the quantifier tree generating more than one child induce
sets ofindependentsubproblems. The whole procedure is named “divide-et-impera”
after this feature, which is absent in standard DPLL procedures. Step 2 gives a funda-
mental contribution towards partitioning subproblems. Should indeed Step 5 work on a
linear prefix, it would never be able to disjoin sub-instances.

5.2.5 Memory consumption. In our experimental evaluations, Quantor often timed-
out because of memory problems. It is in the very nature of that algorithm to be memory
eager: it indeed uses an explicit representation for intermediate formulas derived via
q-resolution and expansion. Unfortunately, for large instances, such intermediate rep-
resentations get so large than the process starts allocating more memory than is physi-
cally available16. As a consequence, performance falls down. By contrast, search-based
solvers usually employ only a fraction of the physical memory, and their time-outs are
actualtime-outs.

sKizzo lays somewhere in the middle: Like quantor, it heavily employs all the avail-
able physical memory, and could proportionally benefit from larger physical memories
(its performances are expected to scale with memory, an already noticed feature of sym-
bolic procedures [57]). Like DPLL solvers, it never causes the virtual memory system
to start managing secondary memory. Obviously, every process can keep on monitoring

15 At the implementation level, a notion of order among variables may still exist—for example if
one employs ordered decision diagrams—though this is a hidden kind of order with absolutely
no effect (other than, possibly, performance) on the underlying reasoning procedure.

16 The large size of such intermediate results strongly resembles what happens with BDD-based
computations. Not by chance, the strong memory requirements ofsKizzo also originate form
the BDD-based representation of the intermediate clause sets managed during symbolic rea-
soning. These intermediate sets can indeed be interpreted as the symbolic, all-at-once counter-
part to the step-by-step, ground approach used by Quantor. See Section 3.4.5.

52

its own memory consumption and just stop working when it is getting too large. How-
ever,sKizzo is able to achieve this result without being forced to give up the solving
process. It will just take more time.

5.3 Future work

Our future work onsKizzo mainly aims at improving the algorithm and the imple-
mentation, both of which show a lot of room for improvements. We now briefly point
out where such space lays, distinguishing among (1) some implementation-related im-
provements, (2) the introduction of already known techniques not yet exploited within
our solver, (3) the addition of new features, and (4) some applicative perspectives.

5.3.1 Implementation. sKizzo v0.1 is a first implementation of a completely new
algorithm. As such, it lacks a lot of optimizations and a careful implementation-level
engineering. Actual bottelnecks in the whole process are still to be discovered and pos-
sibly removed. Some aspects ofsKizzo v0.1 ’s internals suffer from the underlying the-
ory being developed at the same time of the implementation17. With few exceptions,
simple-minded data structures are used. Many of them should be redesigned to pursue
efficiency. For example, techniques to perform fast binary constraint propagation are
very effective in the purely propositional framework. They could be easily lifted to our
case.

There are several parameters to tune in the two linked libraries. Nothing has yet
been attempted in this respect. The decision-diagram package, for example, needs an
initial variable order (known to possibly have a dramatic impact on the overall perfor-
mance), the choice of an algorithm for dynamic reordering18, the control of the size of
computed tables and allocated memory, and so on. Relevant effects on the overall per-
formance may be expected, since a large fraction of the whole running time on complex
instances is spent on either BDD-related operations or variable reordering. Moreover,
all the competitive DD-based QBF solvers reported so far employ ZDDs rather than
BDDs. sKizzo encapsulate the interface towards DDs in a dedicated package, so that
the replacement of one package with another is relatively easy.

In addition to this, there are alternative (and quite different) versions of such li-
braries that worth the case to be considered. For example, a lot of other efficient SAT
solvers (BerkMin, siege, Jerusat, ...) could be plugged into the modular architecture of
sKizzo (where a module exists to abstract over the specific solver employed). Deci-

17 The first implementation core ofsKizzo was written six months ago, when very few ideas of
those reported in Section 3 and Section 4.1 were already clearly stated.

18 Preliminary experimentations show—as expected—a complex tradeoff between the time spent
by sKizzo performing variable reordering and the efficiency of the operations on the resulting
representation, also depending on the reordering algorithm employed.

53

sion diagram packages other than the CUDD should also be tested19 (see the web page
www.bdd-portal.org for a comprehensive list of possibilities).

Beyond the effective setup of libraries’ parameters, a general tuning activity is also
necessary for the solver itself. For example, the strategies to control resource consump-
tion presented in Section 4.1 are powerful tools that still deserve attention to reach their
potential.

5.3.2 Exploiting known techniques.At present,sKizzo employs almost none of the
enhancements that most other solvers heavily exploit. For example:

– No heuristicsis employed, even though there are a lot of heuristics decisions to
be taken. Heuristics may greatly help our solver in reaching earlier conclusions.
The place currently missing heuristics the most is Step 5 (divide-et-impera). The
problem of choosing the next variable to branch on (and possibly the truth value
to be firstly assigned to that variable) is a sensible problem for DPLL-like algo-
rithms. A tradeoff exists between the complexity of deciding which literal is to be
selected and the pruning ability of the resulting choice w.r.t. the size of the search
tree actually explored. At one extreme, one could randomly choose the next vari-
able, thus consuming no time in the selection decision. At the other extreme, one
could solve the problem of finding the variable ordering and truth value assignment
which minimize the number of nodes subsequently explored by the search proce-
dure. However, this problem is even harder [49] than the SAT problem itself, so
one resorts to approximate decisions. Comprehensive studies of the effect of differ-
ent heuristics on the performance of purely existential solvers can be found in [69,
34]. Well known examples of heuristics are theMaximum Occurrences Minimal
Size(MOMS) [29, 58, 22], the combined rule presented in [77], theUnit Propaga-
tion Lookahead(UPL) [47, 8], and theVariable State Independent Decaying Sum
(VSIDS) [52]. Adaptations of such heuristics to the quantified case have to deal
with the partial order among variables induced by the prefix. Most search-based
QBF solvers leverage adapted SAT heuristics (see [43]).

– No form of learningis employed, other than the one possibly performed by the SAT
solver as a black box. However, at least four kinds of learning may be introduced:
(a) learning of failures/successes of the divide-et-impera procedure, resulting in
the insertion of new symbolic clauses; (b) learning of the optimal instance size to
switch from the symbolic reasoning to the search-based behaviour; (c) learning of
the optimal tradeoff between splitting the instance at hand into more pieces and
giving it as a whole to the SAT solver; as the absolute ground size of an instance
gives no clear indication on its hardness, the divide-et-impera procedure should
learn from past SAT instances generated for the same QBF instance; a preliminary

19 While the overall performance of different DD packages is usually comparable, significant
discrepancies may emerge when only a small subset of the operations over BDDs is of interest
(this is the case forsKizzo). In such cases, design choices such as the employment of a pointer-
based vs. an index-based representation, or the constant-time negation via pointers labeling
could make a strong difference.

54

version of this mechanism is already implemented insKizzo v0.1 ; we are also
studying a method based upon the structural analysis of the matrix; (d) the clauses
learned by the SAT solver during one run may be helpful in subsequent runs over
the same QBF instances, provided the whole generate-and-solve procedure is made
incremental. We are working on this improvement (see also Section 5.3.3).

– A major disadvantage of the divide-et-impera procedure presented in Section 3.5 is
that it implicitly relies on chronological backtracking, that is: truth values for vari-
ables are assigned/unassigned following alast-in, first-out policy. So, whichever
the reason the algorithm has to backtrack, it can only backtrack on the (chronologi-
cally) last assignment.Conflict-directed backjumping(sometimes called intelligent
backtracking) is used in DPLL-like solvers to overcome such limitation. It has been
originally introduced for the SAT case [68, 3], and then extended to QBF. When a
contradiction is detected, the backjumping engine computes the strictly necessary
subset of the current partial assignment which is responsible for the contradiction to
arise. The value of the most recently assigned variable appearing in the contradic-
tion has to be changed (alternative schemes from CSP feature hypotheses’ reorder-
ing). In the QBF case, additional complications have to be dealt with, as working
hypotheses may be either universally or existentially quantified, thus playing quite
different roles in backjumping. However, Step 5 deals with a purely existential sce-
nario. In general, a contradiction is detected in Step 6 by the SAT solver, and then
forwarded to Step 5, where it becomes necessary to infer which symbolic assign-
ments are responsible for that ground contradiction to arise. We are working on one
such scheme, which—as in the usual propositional case—can also be extended to
learnsymbolic clauses that will further reduce redundancy.

– Trivial truth and trivial falsity checks are not performed. These techniques have
been proved to be quite effective since early contributions on QBF [16]. As far
assKizzo is concerned, the check for trivial truth amounts to remove all the uni-
versal nodes from the quantifier tree, perform a complete for-all reduction, and
then test for satisfiability the resulting existential instance. Should it come out to
be satisfiable, the original QBF would be guaranteed to be satisfiable as well (the
Skolem functions do not actually depend on their arguments: they areconstant).
Conversely, trivial falsity would follow from the unsatisfiablity of the subset of
clauses only made up by existential literals.

– Subsumption controlis not performed. As soon as a new clause is produced by
some inference step, abackward subsumptioncontrol can be performed. It amounts
to remove all the (already present) clauses that are subsumed by the just added
clause. The converse operation, i.e.:forward subsumptioncontrol, amounts to avoid
adding a clause if it is subsumed by some already present clause. The benefits of
these methods have to be carefully weighted against the time they consume. Any-
way, they are much more relevant to solution-based methods than to search-based
solvers.sKizzo might exploit one such method at three levels: in the original QBF
framework, in the intermediate symbolic representation, and in the final ground

55

reasoning. The second one is by far the more attractive, also considering that many
of the inference rules presented in Section 3.4 produce redundant clauses.

5.3.3 New features.One obvious way of strengthening our approach is to augment
the inference power of Step 1 and/or Step 4 by adding new inference rules. There are
a lot of interesting candidates, though none of them have been extensively tested yet
(beyond the seven rules already employed). As an example, some limited form of q-
resolution could be implemented during Step 1 to remove certain existentially quantified
variables, a la Quantor20.

The SAT instances handled in Step 6 are not unrelated to one another. We are work-
ing on a very natural way of producing an incremental encoding and anincremental
resolutionfor such instances. It would allow to exploit the incremental solving capabil-
ity of state-of-the-art propositional solver, like zChaff.

Another interesting challenge for QBF solvers is to produce and manage compact
certificates for their SAT/UNSAT answers w.r.t. a specific instance. The simplest forms
of certificates are: for a SAT answer, a model of the QBF instance; for an UNSAT an-
swer, a somewhat solver-dependent representation of a (minimal) sequence of inference
steps deriving the empty clause from a (minimally) unsatisfiable subset of the input for-
mula. Once the representation for certificates is decided, a piece of software can be
written (independently of any particular solver) to verify their validity. In this respect,
sKizzo has the advantage that it compactly represents its potential certificates in a na-
tive way. We are working on the model verifier “ozziKs” that takes such a certificate as
input and verify its validity.

5.3.4 Applications. On the applicative side, it would be interesting toconnectour
solver to a real-world model checker. In particular, we have some experience [7, 6] in
modifying/extending the module of NuSMV21 devoted to instance generation for SAT-
based model checking.

Following the guidelines reported in [64, 73, 60], it would be possible to extend
the purely propositional generation mechanism employed in the BMC module to pro-
duce quantified boolean formulas22. Thereafter, the whole collection of SMV modules

20 Quantor employs q-resolution as a core inference rule to decide the instance, together with
universal quantifier expansions. Conversely, q-resolution should be just a pre-processing step
for sKizzo with no commitment to its usage when the enlargement of the formula is not
worth its cost. For example, its application could be limited to remove those variables—if
any—that do not increase the size of the formula, or to eliminate those variables that imply
a significant reduction in the projected ground size of the instance. This happens whenever
in both resolvents the two deepest existential literals have some universal quantifications in
between them along the quantifier tree, and resolution is performed over the deepest variable.

21 NuSMV [19, 20, 18] is a state-of-the-art symbolic model checker that integrates BDD-based
and SAT-based model checking techniques on the whole input language. It has been used for
the verification of industrial designs, as a core for custom verification tools, and as a testbed
for formal verification techniques.

22 On the practical side, the embedding ofsKizzo into NuSMV would be quite natural as this
model checker already integrates the CUDD package (for unbounded symbolic model check-

56

available for NuSMV and related model checkers would be automatically translated
into QBF instances. Moreover, we would have a roboust, industry-standard platform to
extensively compare SAT solvers and QBF solvers on model checking instances.

6 Conclusions

We have introduced a novel algorithm for evaluating quantified boolean formulas. The
originality of our approach is twofold. On the one hand, a decisively new approach
to quantified reasoning is introduced. It amounts to reassess quantified reasoning as a
quantifier-free reasoning in a purposely designed symbolic representation. On the other
hand, numerous contributions to automated reasoning have been rearranged within a
coherent framework. This is both advantageous and instrumental in realizing the above
mentioned symbolic approach.

Our work is motivated by the outstanding potential of quantified reasoning in ap-
plications. Advances in decision procedures for this formalism are ardently expected,
as the only missing step toward making that language irresistibly attractive is to invent
more efficient decision procedures.

The conviction is growing among researchers that the expressive power of quantifi-
cation is not necessarily a shortcoming as far as decision procedures are concerned. In
this respect,sKizzo firstly succeeds to show how to retain both the expressive power
of quantification and the strength of all the known solving techniques for propositional
reasoning. Our preliminary experimental evaluation indeed yields remarkable results.
In addition, the more we realize how wide the room for improvement is, the more those
results sound promising.

Ours and other recent developments witness the youthfulness of the field. Notwith-
standing their early stage, these approaches show the seeds of success. Thus, the loom-
ing possibility of constructing quantified reasoners worhty of inheriting the amazing
success of SAT solvers in applications largely promotes further investigations along
sKizzo’s guidelines.

Acknowledgements

I thank Gigina Aiello for so many reasons I cannot even mention here, and Paolo
Traverso for faithfully supporting my research efforts. I’m grateful to Sara Bernardini
for the many days she has spent on listening to my early ideas aboutsKizzo. I also
thank Marco Cadoli for several helpful advices on technical issues and for being so
kind in discussing this work with me. Luciano Serafini read a preliminary version of
this work and provided a lot of useful comments. Finally, Amedeo Cesta deserves a
special thought for his indefatigable and strong encouragement.

ing) and the zChaff solver (for bounded model checking). Moreover, we would benefit from its
pre-processing capabilities, that include parsing of SMV models, flattening, boolean encoding,
predicate encoding, and cone of influence reduction (see [20]).

57

References

1. A. Ayari and D. Basin. Bounded Model Construction for Monadic Second-order Logics. In
Proceedings of CAV’00, 2000.

2. F. Bacchus and J. Winter. Effective Preprocessing with Hyper-Resolution and Equality Re-
duction. InProceedings of SAT’03, 2003.

3. R. Bayardo and R. Schrag. Using CSP look-back rechniques to solve real-world SAT in-
stances.Proceedings of AAAI97, 1997.

4. M. Benedetti. Web site of skizzo,sra.itc.it/people/benedetti/sKizzo , 2004.
5. M. Benedetti.Bridging Refutation and Search in Propositional Satisfiability. PhD thesis,

Dipartimento Informatica e Sistemistica, Università “La Sapienza”, Roma, 2001.
6. M. Benedetti and S. Bernardini. Incremental Compilation-to-SAT Procedures. InProceed-

ings of SAT 2004, 2004.
7. M. Benedetti and A. Cimatti. Bounded Model Checking for Past LTL. InProceedings of

TACAS 2003, number 2619 in LNCS, pages 18–33, 2003.
8. D. Le Berre. Exploiting the real power of unit propagation lookahead. In Henry Kautz and

Bart Selman, editors,Electronic Notes in Discrete Mathematics, volume 9. Elsevier Science
Publishers, 2001.

9. A. Biere. Resolve and Expand. InProceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT 2004), pages 238–246, 2004.

10. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Checking without
BDDs. InProc. of Design Automation Conference, volume 1579, pages 193–207, 1999.

11. R. I. Brafman. A simplifier for propositional formulas with many binary clauses. InProceed-
ings of the International Joint Conference on Artifical Intelligence (IJCAI), pages 515—522,
2001.

12. R. E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE Transaction
on Computing, C-35(8):677–691, 1986.

13. H. K. Büning and T. Lettmann.Propositional Logic: Deduction and Algorithms. Cambridge
University Press, 1999.

14. H. K. Büning and X. Zhao. On Models for Quantified Boolean Formulas. InProceedings of
SAT’04, 2004.

15. S. N. Burris. Clarification: Skolem, available on-line at
www.thoralf.uwaterloo.ca/htdocs/scav/skolem/skolem.html .

16. Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to evaluate quanti-
fied boolean formulae. InProceedings of the fifteenth national/tenth conference on Artificial
intelligence/Innovative applications of artificial intelligence, pages 262–267. American As-
sociation for Artificial Intelligence, 1998.

17. P. Chatalic and L. Simon. Multi-Resolution on compressed sets of clauses. InProceedings of
the Twelfth International Conference on Tools with Artificial Intelligence (ICTAI’00), 2000.

18. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In
Proc. of Int.nl Conf. on Computer-Aided Verification (CAV 2002), 2002.

19. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic Model
Verifier. In N. Halbwachs and D. Peled, editors,Proceedings Eleventh Conference on
Computer-Aided Verification (CAV’99), number 1633 in LNCS, pages 495–499, 1999.

20. A. Cimatti, E. Giunchiglia, M. Roveri, M. Pistore, R. Sebastiani, and A. Tacchella. Integrat-
ing BDD-based and SAT-based Symbolic Model Checking. InProceeding of 4th Interna-
tional Workshop on Frontiers of Combining Systems (FroCoS’2002), 2002.

21. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M.Y. vardi. Benefits
of bounded model checking at an industrial setting.LNCS, pages 436–453.

58

22. J. Crawford and L. Auton. Experimental Results on the Cross Over point in Random 3-SAT.
Artificial Intelligence, 81, 1996.

23. J. M. Crawford and A. D. Baker. Experimental results on the application of satisfiability
algorithms to scheduling problems. InProc. of 12th AAAI ’94, pages 1092–1097, 1994.

24. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Journal
of the ACM, 5:394–397, 1962.

25. M. Davis and H. Putnam. A computing procedure for quantification theory.Journal of the
ACM, 7, 1960.

26. U. Egly, H. Tompits, and S. Woltran. On Quantifier Shifting for Quantified Boolean For-
mulas. InProceedings of the SAT-02 Workshop on Theory and Applications of Quantified
Boolean Formulas (QBF-02), pages 48–61, 2002.

27. R. Feldmann, B. Monien, and S. Schamberger. A Distributed Algorithm to Evaluate Quan-
tified Boolean Formulas. InProceedings of the AAAI National Conference on Artificial
Intelligence, pages 285–290, 2000.

28. J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dransfield, and W. Vanfleet. SBSAT:
a state-based, BDD-based satisfiability solver. InProceedings of SAT’03, 2003.

29. J.W. Freeman.Improvements to Propositional Satisfiability Search Algorithms. PhD thesis,
The University of Pennsylvania, 1995.

30. A. Van Gelder and Y. K. Tsuji. Satisfiability testing with more reasoning and less guessing.
Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 1996.

31. Ian Gent and Andrew Rowley. Encoding connect-4 using quantified boolean formu-
lae. Technical Report APES-68-2003, APES Research Group, July 2003. Available from
(http://www.dcs.st-and.ac.uk/˜apes/apesreports.html) .

32. M. GhasemZadeh, V. Klotz, and C. Meinel. ZQSAT: A QSAT Solver
based on Zero-suppressed Binary Decision Diagrams, available online at
www.informatik.uni-trier.de/TI/bdd-research/zqsat/zqsat.html ,
2004.

33. E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE: A system for deciding Quantified
Boolean Formulas Satisfiability. InProc. of the International Joint Conference on Automated
Reasoning (IJCAR’2001), 2001.

34. Enrico Giunchiglia, Massimo Maratea, Armando Tacchella, and Davide Zambonin. Evaluat-
ing search heuristics and optimization techniques in propositional satisfiability. InProceed-
ings of the First International Joint Conference on Automated Reasoning, pages 347–363.
Springer-Verlag, 2001.

35. Jan Friso Groote and Joost P. Warners. The propositional formula checker heerhugo.JAR,
24:101–125, 1999.

36. M. Stickel H. Zhang. Implementing Davis-Putnam’s method by tries. Technical report, The
University of Iowa, 1994.

37. Daniel Jackson. Automating first-order relational logic. InProceedings of the 8th ACM
SIGSOFT international symposium on Foundations of software engineering, pages 130–139.
ACM Press, 2000.

38. H. Kautz and B. Selman. Planning as satisfiability. InProc. of ECAI 1992, pages 359–363.
39. J. Kim, J. Whittemore, J. P. M. Silva, and K. A. Sakallah. On Applying Incremental Satisfi-

ability to Delay Fault Problem. InProc. of DATE 2000, pages 380–384, 2000.
40. H. Kleine-Buning, M. Karpinski, and A. Flogel. Resolution for quantified Boolean formulas.

Information and Computation, 117(1):12–18, 1995.
41. R. Kowalski and P. Hayes. Semantic Trees in Automated Theorem Proving.Machine Intel-

ligence, 4:87–101, 1969.
42. T. Larrabee. Test pattern generation using boolean satisfiability. InIEEE Transaction on

Computer-aided Design, pages 4–15, 1992.

59

43. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. Second QBF solvers evaluation,
avaliable on-line atwww.qbflib.org , 2004.

44. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF areana: the SAT’03 evalu-
ation of QBF solvers, avaliable on-line atwww.qbflib.org , 2003.

45. R. Letz. Advances in Decision Procedures for Quantified Boolean Formulas. InProceedings
of the First International Workshop on Quantified Boolean Formulae (QBF’01), pages 55–
64, 2001.

46. Reinhold Letz. Lemma and model caching in decision procedures for quantified boolean
formulas. InProceedings of the International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods, pages 160–175. Springer-Verlag, 2002.

47. C. Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems. In
Proceedings of IJCAI-97, pages 366–371, 1997.

48. Chu-Min Li. Integrating equivalency reasoning into Davis-Putnam procedure. Inproceed-
ings of AAAI-2000, pages 291–296, 2000.

49. P. Liberatore. On the complexity of choosing the branching literal in dpll.Artificial Intelli-
gence, 1-2(116):315–326, 2000.

50. F. Massacci and L. Marraro. Logical Cryptanalysis as a SAT Problem.Journal of Automated
Reasoning, 24, 2000.

51. S. Minato.Binary Decision Diagrams and Applications to VLSI CAD. Kluwer, 1996.
52. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

Efficient SAT Solver. Inproceedings of the 38th Design Automation Conference, 2001.
53. D. B. Motter and I. L. Markov. A compressed, breadth-first search for satisfiability.LNCS,

2409:29–42, 2002.
54. G. Pan, U. Sattler, and M.Y. Vardi. BDD-based decision procedures for K.LNAI, 2392:16–

30, 2002.
55. G. Pan and M.Y. Vardi. Optimizing a symbolic modal solver. InProceedings of CADE 2003,

2003.
56. G. Pan and M.Y. Vardi. Search vs. Symbolic Techniques in Satisfiability Solving. InPro-

ceedings of SAT 2004, 2004.
57. G. Pan and M.Y. Vardi. Symbolic Decision Procedures for QBF. InProceedings of the Tenth

International Conference on Principles and Practice of Constraint Programming (CP04),
2004.

58. Daniele Pretolani.Satisfiability and hypergraphs. PhD thesis, Dipartimento di Informatica,
Universit̀a di Pisa, 1993.

59. J. Rintanen. Construction Conditional Plans by a Theorem-prover.Journal of A. I. Research,
pages 323–352, 1999.

60. J. Rintanen. Partial implicit unfolding in the davis-putnam procedure for quantified boolean
formulae. InProceedings of the International Conference on Logic for Programming, Arti-
ficial Intelligence and Reasoning (LPAR’01), 2001.

61. I. Rish and R. Dechter. Resolution versus search: Two strategies for sat. In I. Gent et al.,
editor,SAT2000, pages 215–259. IOS Press, 2000.

62. J. A. Robinson. The Generalized Resolution Principle.Machine Intelligence, 3:77–94, 1968.
63. A. San Miguel Aguirre and M. Y. Vardi. Random 3-SAT and BDDs: The plot thickens

further. In Proceedings of the 7th International Conference on Principle and Practice of
Constraint Programming, pages 121–136. Springer-Verlag, 2001.

64. W. J. Savitch. Relation between nondeterministic and deterministic tape complexity.Journal
of Computer and System Sciences, 4, 1970.

65. C. Scholl and B. Becker. Checking equivalence for partial implementation. Technical report,
Institute of Computer Science, Albert-Ludwigs University, 2000.

66. M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis.Com-
puters and Mathematics with Applications, 1(7):67–72, 1981.

60

67. J. P. Silva and K. A. Sakallah. Grasp: a new search algorithm for satisfiability.Proc.
IEEE/ACM International Conference on Computer-Aided Design, pages 220–226, 1996.

68. J. P. Marques Silva. An overview of backtrack search satisfiability algorithms. InFifth
International Symposium on Artificial Intelligence and Mathematics, 1998.

69. J. P. Marques Silva. The impact of Branching Heuristic in Propositional Satisfiability Algo-
rithms. InProceedings of the 9th Portuguese Conference on Artificial Intelligence, 1999.

70. A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear Temporal Logic.
Journal of the ACM, 32:733–749, 1985.

71. Th. Skolem.Über die mathematische Logik.NMT, 10:125–142, 1928.
72. Fabio Somenzi. CUDD: Colorado University Binary Decision Diagrams, available online at

vlsi.colorado.edu/ ∼fabio/CUDD , 1995.
73. L. J. Stockmeyer and A. R. Meyer. Word Problems Requiring Exponential Time. InIn 5th

Annual ACM Symposium on the Theory of Computing, 1973.
74. G. Sutcliffe and C. Suttner. Evaluating general purpose automated theorem proving systems.

Artificial Intelligence, 131(1-2):39–54, 2001.
75. T. E. Uribe and M. E. Stickel. Ordered binary decision diagrams and the Davis-Putnam

procedure. In J. P. Jouannaud, editor,1st International Conference on Constraints in Com-
putational Logics, volume 845, pages 34–49. Springer-Verlag Inc, 1994.

76. Ingo Wegener.Branching Programs and Binary Decision Diagrams. Monographs on Dis-
crete Mathematics and Applications. SIAM, 2000.

77. H. Zhang. Sato: An efficient propositional prover.Proceedings of 14th International Con-
ference on Automated Deduction, pages 272–275, 1997.

78. L. Zhang and S. Malik. Towards Symmetric Treatment of Conflicts And Satisfaction in
Quantified Boolean Satisfiability Solver. InProceedings of 8th International Conference on
Principles and Practice of Constraint Programming (CP2002), 2002.

61

