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Abstract

We introduce a novel algorithm for the evaluation ofquantified boolean
formulas(QBFs), which we callsKizzo. Our work is firstly framed in the broad
field of algorithms for automated deduction. Then, we enlighten the strong
application-related interest in decision procedures for QBFs.

The algorithm itself is thoroughly discussed. It integrates within a uniform
framework several different ideas and techniques: classical resolution-based
QBF reasoning, algorithms for structure reconstruction, propositional skolem-
ization, BDD-based representations, symbolic reasoning, search-based deci-
sion procedures, compilation to SAT techniques, and more. A detailed account
of each module in the solver is presented, together with the overall architecture
explaining how they interact with one another.

We also report of our first implementation for the algorithm. It was used to
experimentally evaluate our approach, yielding very interesting results. The re-
lated literature is carefully reviewed, aiming to point out the many distinguish-
ing features ofsKizzo. Finally, a large section is devoted to the presentation of
our ongoing efforts and future work on the topic.
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1 Introduction

Many application problems (Planning, Scheduling, Formal Verification, and more) can
be successfully tackled by stating them in some formal language featuring an inference
apparatus (i.e., alogic). Thereafter, they are solved by means of an automated-reasoning
tool able to manage statements in the chosen language.

This language should be expressive enough to capture the scenario of interest. For
example, if one needs to predicate about time-dependent properties, he or she would
better use a logic containing time-related operators. But there is another crucial issue to
take into account while choosing the target logic: As far as applications are concerned,
theefficacyof the known decision procedures is of primary importance.

Should a deduction engine for a certain logic come out to be incredibly effective
with respect to the average case, it would probably become attractive for many applica-
tions. Even if the underlying logic is not expressive enough for the problem at hand, it
is still possible to re-write a somehow restricted version of the problem, or to retain the
whole meaning of the problem at the expense of a (possibly huge) enlargement in the
size of each instance (also suffering from a remarkable obfuscation).

From a theoretical point of view, properties of most commonly used logics are well
known. For example, first-order logic (FOL) is known to be semidecidable, while
propositional logic (PROP ) is a simpler decidable logic in which the satisfiability
problem is NP-complete; quantified propositional logic (QBF ) and linear propositional
temporal logics (PLTL) are PSPACE, and so on. However, what does really matter to
applications is the average case, i.e. the capability of a reasoning engine to effectively
solve those problems that arise in practice. As we move from a more expressive to a less
expressive formalism, we may improve the worst-case complexity, but we also loose the
expressive power of certain syntactic operators that not only provide a more natural way
to state relevant facts or rules, but could also be effectively exploited during the solving
process, at least in principle. In general, the actual balance between these pros and cons
is unclear.

As a matter of fact, the most effective solving tools for a large class of industrial-
scale problems [21] (such as computer-aided design of integrated circuits [39, 42], Plan-
ning [38], Model Checking for dynamic systems [10], Scheduling [23], Operations Re-
search, and Cryptography [50], to name a few) areSAT solvers, which are reasoning
engines designed to decide the existence of models forPROP instances.

One step ahead of propositional logic, we encounter the more expressivequantified
propositional logic, which adds the valuable possibility toquantifyover the truth value
of variables. Most of the industrial-made problems reported above have a more natural
QBF formulation, which is—in addition—possibly exponentially more succinct than
the propositional one. Compelling questions arise:Are QBF solving tools worthy of this
inheritance?Do they add any value to the reasoning capabilities of purely propositional
solvers?

The answer is:no. Or, at least,not yet. QBF logic is a promising formalism still in need
for substantial improvements as to satisfiability procedures. A lot of research efforts
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are currently focusing on designing new solving paradigms to capture the added value
of quantified reasoning. In this work, we contribute to such research with several new
ideas, and with a novel decision procedure, calledsKizzo1.
From an historical perspective, the approach we propose acts like a glue that joins to-
gether techniques developed over decades in the framework of automated reasoning.
The first and most important component of our construction traces back to the Twenties
(the Skolem theorem [71, 15]). Following the timeline, we capitalize on some semi-
nal contributions to automated theorem proving from the early Sixties (DPLL algo-
rithms [24, 25]). Then, a compact formalism from the Eighties to reason about boolean
functions [12, 76] is employed. The Nineties gave us key contributions towards effec-
tive quantified reasoning [16, 40]. In the same years, successful techniques to compile
real-world problems into SAT instances were proposed [38, 42, 10]. We adapt such tech-
niques to our case. Finally, symbolic representations for propositional problems gained
attention in the last few years [17, 53, 57], and are largely exercised here.

Our approach exploits all these techniques within a coherent framework, bysym-
bolically reasoningon thecompact representationof thepropositional expansionof the
skolemized problem, resorting to ground,SAT-based propositional reasoningwhenever
it pays back. Over and above building on top of existing contributions—and purposely
to leverage all of them at once—our work essentially introduces a new way of looking
at quantified boolean reasoning (see Section 5.2).

The rest of the paper is organized as follows. Section 2 introduces QBFs, presents the
foundamental decision strategies employed in QBF solvers, and gives a first overview
of our algorithm. A more detailed description of the solver is presented in Section 3,
together with exemplifications over small formulas. Section 4 is concerned with imple-
mentation and experimentation. The current version of the solver is presented, bench-
mark suites used for the evaluation are discussed, statistical results over real-world in-
stances and a preliminary performance evaluation are reported. The related literature is
discussed in Section 5, wheresKizzo is also compared with other existing solvers. Fu-
ture research directions are presented. Section 6 closes the paper with a few concluding
remarks.

2 Overview

2.1 Quantified Boolean Formulas

We consider quantified boolean formulas inprenex conjunctive normal form, such us,
for example, this one:

∃a∀b∃c (a ∨ b ∨ ¬c) ∧ (b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c) (1)

which is comprised of theprefix “∃a∀b∃c” followed by thematrix “(a ∨ b ∨ ¬c) ∧
(b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)” which is aconjunctive normal form(CNF)

1 Arbitrarily shortened form ofskolemizzo, which is an Italian word meaning “I apply skolem-
ization”.
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formula, i.e. a propositional formula made up by conjuncting clauses, each clause being
a disjunction of literals (a variable or a negated variable). More in general, we consider
formulas in the form

Q1V1Q2V2 . . .QnVn F

where the matrixF is a CNF propositional formula on variablesvar(F), and the prefix
Q1V1Q2V2 . . .QnVn is such thatQi ∈ {∀,∃}, i = 1, . . . , n andQi 6= Qi+1, i =
1, . . . , n−1, while{Vi} is a partition ofvar(F) (i.e.:∪n

i=1Vi = var(F) andVi∩Vj = ∅
for i 6= j). We suppose that eachVi is non-empty.

EachVi is calledscope. A scopeVi is existential(universal) if Qi = ∃ (Qi = ∀).
The scopeσ(v) of a variable is the indexi such thatv ∈ Vi. The scopeσ(Γ ) of a clause
Γ is the maximal scope of its variables. Variablesv ∈ Vi are said to be existentially
(universally) quantified ifQi = ∃ (Qi = ∀). The set of existentially (universally)
quantified variables inf is denoted byvar∃(f) (var∀(f), respectively).

2.2 Solving QBFs

To solve(equivalently: toevaluate, or todecide) a QBF amounts to determine its truth
value, according to a semantics which we give intuitively for the sample formula (1).
That formula is solved by answeringtrue or falseto the question: “Does a truth value
for a exist such that for both possible truth values forb a truth value forc exists such
that the matrix(a ∨ b ∨ ¬c)(b ∨ c)(a ∨ ¬b ∨ c)(¬a ∨ ¬b ∨ ¬c) evaluates totrue?” (the
notion of evaluation for the matrix is the standard one for propositional logic).

A formula is said to besatisfiableif the answer to the above question is “yes”,
unsatisfiableotherwise. Each satisfiable formula has at least onemodel, i.e. a way of
deciding the truth value of every existential variable as a function of all the universal
variables with lower scope, in such a way that the matrix evaluates totrue whichever
the values of those universal variables. Thus, a model is a collection of boolean func-
tions, one for each existential variable, meant to represent the way existential variables
have to depend on the preceding universal variables (w.r.t. the order in the prefix) to
guarantee an always satisfied matrix. Such a set of functions has a natural, tree-shaped
representation, which is represented in the left side of Figure 1 for the sample case (1).
Nodes labeled by universal variables have two child subtrees, one for each truth value,
and a assignment satisfying the matrix is encountered along each path to a leaf.

QBF solversare algorithms designed to tell formulas having at least one model from
those having none. For example, a QBF solver can be engaged to decide that (1) is
indeed satisfiable, whereas the statement

∃a∀b∃c (a ∨ b ∨ c) ∧ (b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b) (2)

has no model (it isunsatisfiable).
Unfortunately, QBFs arising from the applications mentioned in the introduction

are not as small as shown in these examples. They may indeed contain tens of quantifier
alternations, thousands of variables, and millions of clauses.
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Fig. 1.On the left: A model for the satisfiable instance (1); On the right: The semantic evaluation
tree of the unsatisfiable instance (2)

2.3 Classical Decision Strategies

Two classical strategies exist to decide QBF formulas.

Search. The prefix is dealt with in a left-to-right way. The order of the variables in the
prefix is respected along each branch of thesemantic evaluation treefor the for-
mula, which is the and/or tree depicted in the right side of Figure 1 for the sample
case of (2). The root is labeled by the original matrix, while the formula attached
at one node is obtained from the formula labeling its father node by assigning one
propositional variable. Leaves are labeled by either the empty formula> (mean-
ing that the assignment from the root to the current leaf satisfy the original matrix)
or the empty clause⊥ (the assignment contradicts the formula). According to the
semantics of quantifiers, an existential variable generates anor node that disjunc-
tively split each branch, while universal quantifiers are associated toandnodes that
split branches conjunctively. A model, if one exists, is a subtree with all the leaves
labeled by>, extracted by choosing only one child for each existential node, and
both children for conjunctive nodes. A search-based solver visits the evaluation tree
to determine whether such a subtree does exist. As no model can be extracted out
of the tree in the right side of Figure 1, the formula (2) is unsatisfiable.

Solve. Rather than search for a model, it is possible tosolvethe formula by applying
a refutationally complete procedure. Such strategy aims to derive necessary conse-
quences from the given formula, ending up with the empty clause if and only if the
original formula is unsatisfiable. These methods build upon generalizations of the
resolution approach for standard satisfiability, such asq-resolution[40, 13]. There
are several possible complete strategies for applying resolution. For example, we
can focus oneliminating quantifiersin a right-to-left order (w.r.t. the order in the
prefix). We get rid of existential quantifiers by q-resolution, andexpanduniversal
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quantifiers to the two cases they represent. In the sample case of the unsatisfiable
instance (2), we would start by resolving each clause containingc against each
clause containing¬c, thus obtaining∃a∀b(a ∨ b) ∧ (¬a ∨ b) (wherec vanished).
The universal quantifierb can be eliminated by constructing the conjunction of a
copy (a′ ∨ b′) ∧ (¬a′ ∨ b′) of the matrix whereb′ has to be assigned totrue with
a different copy(a′′ ∨ b′′) ∧ (¬a′′ ∨ b′′) whereb′′ is assigned tofalse. We obtain
∃a′′(a′′) ∧ (¬a′′), which by resolution finally yields the empty clause.

QBF solvers employ one of these two strategies. However, the underlying strategy
represents only one out of several ingredients in competitive solvers, possibly not the
prominent one. Some of the many enhancements that have to be introduced to construct
an effective solver are discussed in Section 5.

2.4 sKizzo at a glance

sKizzo does not comfortably fit into either of the classical strategies we have just
reviewed (even if bothsearch-related andsolving-related elements are present in our
solver, as discussed in Section 5.2).

The key idea is torestatethe original instance as a purelyexistentialproblem (SAT)
by moving it to a different boolean space, where variables represent higher-level con-
cepts. This new space contains decision problems over the existence of a consistent set
of boolean functions representing models for the originating QBF instance (according
to what we have seen in Section 2.2).

For example, to solve the QBF instance (1) we restate the problem as follows: “Do
a constant boolean functionsa and a unary boolean functionsc(b) exist that compute
the truth values to be assigned toa and c, respectively, in such a way that the matrix
always evaluates totruewhichever the truth value chosen forb?”.

Such translation from one problem space into another is almost identical to a well-
known technique, calledskolemization. It is indeed fair to say that skolemization is at
the very heart ofsKizzo. Unfortunately, it is not enough to designate skolemization as
a core technique to profitably deal with QBFs. A lot of striking and inescapable issues
do arise in practice. Most of the algorithmssKizzo employes have been designed to
get rid of these complications. For example: (a) the prefix of a QBF formula does not
always closely reflect the dependencies between existential and universal variables; (b)
the result of a classical skolemization is neither a purely propositional formula nor even
a QBF formula; (c) if we cast a skolemized instance into a purely propositional shape,
we obtain such a huge instance that not only a direct solution is impractical, but an ex-
plicit representation is unfeasible; (d) if we adopt a compact or symbolic representation,
we have to re-design all the classical inference rules to work on symbolic objects, as we
cannot afford raw groundization nor even for intermediate results; (e) complete deci-
sion procedures may be inefficient in the symbolic framework, so we may be forced—
sooner or later—to resort to a search-based complete algorithm; (f) the combinatorial
core coming out of all the preceding steps is best dealt with by a state-of-the-art SAT
solver, which we have to properly involve in the solving process.
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Fig. 2.High level view ofsKizzo’s internals

sKizzo has been designed to solve all the above problems. Figure 2 represents a sim-
plified waterfall model for the algorithm, which is made up of six steps. The data and
control flow is almost one-way, as each module takes its input form the previous step
and produces an output used by subsequent steps. The major exception is Step 5, which
may resort back to Step 4. The architectural model we adopt effectively decomposes
relevant atomic functionalities and clearly isolates all the key ideas. It is adopted to sim-
plify the exposition, thought it does not closely reflect the implementation presented in
Section 4. The algorithm works as follows.

Step 1. Start bynormalizing the input formula. This is just a pre-processing step which
is performed working on the original QBF representation. It consists in applying
simple inference rules (such us unit clause propagation and pure literal elimination)
up to the fixpoint. It aims to (a) anticipate the simple part of the work—that could
anyway be performed later on as the inference power of Step 1 is subsumed by the
following steps, and (2) put the formula in a normal form in which each clause has
an existential scope as required by subsequent steps. See Section 3.1.

Step 2. Extract a tree-shaped syntactic structureout of the flat conjunctive normal
form coming from Step 1. The prefix of our QBF formula specifies a linearly
shaped syntactic tree. This tree is responsible for conveying a relevant part of the
semantics of a formula, namely, it says which existential variables are in the scope
of which universal variables. Semantically equivalent trees may exists that are no
longer linear, thus more closely reflecting the intrinsic dependencies in the matrix.
See Section 3.2.

Step 3. Produce asymbolic representationof the propositional versionof the skolem
translationof the structured formula coming out of Step 2. Things seem compli-
cated, but they are not. In essence, we apply the Skolem theorem to obtain a purely
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universal but satisfiability equivalent formula. By doing so, we introducefunction
symbolsnot belonging to the toolkit of QBF logic. To eliminate such functions, we
expand their propositional meaning over each point of their definition domains. As
a side effect, our purely universal instance becomes a purely existential one, i.e. a
SAT instance. Unfortunately, this instance is possibly exponentially larger than the
original QBF formula. In practice, it is intractable, unless some kind of compact
representation is employed. That is exactly what we do, by means of a two-level
symbolic representation. See Section 3.3.

Step 4. Try to solve (or, at least, to strongly simplify) the symbolically-represented,
purely propositional instance coming out of Step 3. To perform this work, apply
up to the fixpoint a set of inference rules that manage symbolic objects to produce
symbolic inferences, thus never expanding the formula to its ground meaning. See
Section 3.4.

Step 5. If Step 4 is unable to solve the problem (as it enrolls a refutationally incomplete
inference apparatus), start dividing the problem into smaller and simpler pieces,
until a sufficiently small sub-problem is obtained that either (a) can be directly
solved by employing the symbolic rules given in Step 4, or (2) is affordable by a
SAT solver once extended to its full,ground meaning. See Section 3.5

Step 6. Should Step 5 decide to face the ground version of some sub-problem, we
would have to produce the necessary flat propositional space, generate all the nec-
essary clauses, give the resulting instance to the SAT solver, wait for its answer,
and give the result back to Step 5. We do this in Step 6. See Section 3.6.

Some steps (namely, Step 1, 4 and 5) are able to decide specific classes of formulas.
Others just perform a kind of “pre-processing” aiming at modifying the representation
of the problem or reducing its size. They never decides anything.

2.5 Notation

We denote clauses by uppercase greek letters, and represent them either as explicit
conjunctionsΓ = l1 ∨ l2 ∨ · · · ∨ ln, or as sets of literalsΓ = {l1, . . . , ln}. Given a
clauseΓ = {l1, . . . , ln}, we denote byΓ ∗ l the result ofapplying the assignmentl to
that clause (l being a positive or negative literal). The result is that (1) the clause stays
the same ifvar(l) doesn’t appear invar(Γ ), (2) the clausedisappears(is subsumed) if
l ∈ Γ , and (3) the clauseresolvesto Γ \{¬l} if ¬l ∈ Γ . This notion is readily extended
to sets of clauses and sets of literals, in so asf ∗∆ is the formula resulting after applying
the (partial) assignment∆ to each clause inf . The total orderingV1 < V2 < · · · < Vn

among scopes induces a partial ordering≺ among variables, in which eachVi is an
unordered subset of variables, andv ≺ w wheneverv ∈ Vi andw ∈ Vj for somei < j.
Given a subsetS of the variables and the partial ordering induced by the prefix, we
defineSup(S) = {v ∈ S|@v′ ∈ S.v ≺ v′}. TheSup function is extended to clauses,
in so asSup(Γ ) = {v ∈ var(Γ )|@v′ ∈ var(Γ ).v ≺ v′}.

We say that a variablev dominatesanother variablew iff v ≺ w (we also say that
w is deeperthanv). The universal depthδ(v) of an existential variablev ∈ Vi is the
number of dominating universal variables forv: δ(v) = |{v|v ∈ Vj , j < i,Qj = ∀}|.
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We denote theexclusive oroperator by “⊗”. We use such operator to construct liter-
als out of variables, when the polarity of the literal depends on some binary parameter.
For example,a⊗v meansv whena = 0, and¬v whena = 1.

3 The algorithm

In this section we describe each step of our decision procedure in turn, according to
Figure 2.

3.1 Step 1: QBF Normalization

The aim of this step is to normalize and simplify the input formula.

Step 1 takes as input the original instance, and produces either a (possibly) simplified
version of that formula, or—for “simple” instances—a SAT/UNSAT decision.

A set of (easy-to-implement but incomplete) inference rules for QBF is utilized.
Each rule is repeatedly applyed, until its deductive closure is computed. Deductive clo-
sure is expanded for each rule in a round-robin way, until fixpoint. The formula is then
said to benormalizedwith respect to the set of rules employed. For classes of formulas
that are decided during this step, a SAT/UNSAT outcome is obtained and the algorithm
terminates.

A candidate set of rules is the following.

PLE (Pure Literal Elimination) selects literals that only appears positively (negatively);
if a pure literal has existential scope, it is safe to assign it to true (the standard propo-
sitional case: some clauses are satisfied, none is resolved, and we are free to select
either truth value). Conversely, this choice is too optimistic for universal pure lit-
erals. The clauses in which an universal pure literal appears should be satisfiable
even if the literal is false. So, PLE chooses the worst case.

UCP (Unit Clause Propagation) is a powerful rule that only considers clauses{γ}
made up of one single literal. If the scope of the clause is universal, the formula
is immediately unsatisfiable (γ has to be true, and, at the same time, the formula
should hold for both truth values). If the scope is existential, the literal must be
assigned (and propagated) to avoid an immediate contradiction, as in the standard
propositional case.

FAR (ForAll Reduction) is an equivalence preserving rule specific to QBF. It allows
to remove the deepest literal from each clauseΓ with universal scope (Qδ(Γ ) =
∀). If the resulting clause still has universal scope, the rule is applied again. If
the empty clause is derived, the formula is unsatisfiable. Otherwise, the resulting
clause has existential scope. The intuition behind FAR is that for clauses in which
the deepest literal is universal the “worst-case” assignment is always the one that
resolves against that literal, so we cannot confide in that literal to satisfy the clause.
We simply remove it.
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Only the FAR rule isessentialto compute the normal form required by subsequent
steps. When all the rules reach their fixpoint (and neither a contradiction is detected,
nor the instance is satisfied), the formula is passed to the subsequent steps. In particular,
each formula is supposed—from now on—to be exclusively made up of clauses with
existential scope.

3.2 Step 2: Syntax-tree Reconstruction

The aim of this step is to partly reconstruct the lost/hidden syntactic structure of the
formula, thus producing information that greatly helps subsequent steps.

Step 2 takes as input the prenex QBF formulaf produced by Step 1, and constructs a
quantifier treefor f . A quantifier treetree(f) for f is a tree-shaped structure with the
following properties:

1. The root node is labelled with an “and” connective, and may have any number of
children.

2. The internal nodes have free degree and are labeled with a (universally or exis-
tentially) quantified variable inf . Each variable inf appears somewhere in the
internal nodes oftree(f). Existentially quantified variables appears intree(f) ex-
actely once. Conversely, any two internal nodesn andn′ can be labelled with the
same universal variable, provided they do not lay on the same branch.

3. Each leaf noden is labelled with a non-empty list of clauses; the set of variables
in such clauses is always a subset of the variables encountered along the path from
the root ton; every clause inf appers somewhere among the leaves, but no clause
is reported twice or more.

4. If a variablev appears in the prefix off before a variablev′, andv andv′ have
different quantifiers, then along every branch oftree(f) that contains bothv and
v′, v′ is a successor ofv (i.e. quantifier alternation is preserved).

In general, different quantifier trees exist for the samef , the simplest one being a lin-
ear tree made up of one single branch linearly replicating the sequence of variables
in the prefix off . However, more structured trees also exist in general. To our pur-
pose, the smaller is the average universal depth for existential variables, the better the
reconstructed tree. The best trees are those minimizing the universal depth ofall the
existential variables2. We employ Algorithm 1 to construct our quantifier tree.

It is straightforward to interpret a quantifier treet as the syntactic tree of a non-prenex
quantified boolean formulaqbf(t) inductively defined as:

qbf(n) =

Γ1 ∧ ... ∧ Γn, for leaf nodes labeled by {Γ1, ..., Γn}
qbf(c1) ∧ ... ∧ qbf(cn), for the root
Qv. (qbf(c1) ∧ ... ∧ qbf(cn)) , for nodes with label(n) = v,Qσ(v) = Q

2 We call such treesminimal quantifier trees. Their existence, uniqueness, and the complexity
of their construction will be investigated elsewhere.
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input : A prenex QBF formulaf
output: A quantifier tree forf

// First, we create the root;
r ← the root node for the tree;
label(r)← “ ∧ ”;

// Then, we create the leaves together with their lists of attached clauses;
activeNodes← ∅;
foreachv ∈ var∃(f) do

n← new node;
label(n)← v;
clauses(n)← {Γ ∈ f |v ∈ Sup(Γ )};
depends(n)← ∅;
foreachΓ ∈ clauses(n) do

foreachγ ∈ Γ do
depends(n)← depends(n) ∪ var(γ);

end
end
depends(n)← depends(n) \ {v};
f ← f \ clauses(n);
activeNodes← activeNodes ∪ {n};

end

// Finally, the rest of the tree in a bottom-up way;
while activeNodes 6= ∅ do

n← pick one variable fromSup(activeNodes);
if depends(n) = ∅ then

father ← r;
else

v ← pick one fromSup(depends(n));
if isUniversal(v) then

father ← new node;
label(father)← v;
activeNodes← activeNodes ∪ {father};
depends(father)← depends(n) \ {label(n)};

else
father ← the noden with label(n) = v ;
depends(father)← depends(father) ∪ depends(n) \ {label(n)};

end
end
father(n)← father;
activeNodes← activeNodes \ {n};

end

Algorithm 1 : An algorithm to construct a quantifier tree for a QBF formula
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∧

∀a∀a

∀b

∃f

∃c

∀d ∀e

∃g ∃h

a∨¬c

c∨¬d∨g
c∨a∨¬g

a∨h
c∨e∨¬h

¬b∨¬f
¬a∨b∨f

Fig. 3.A minimal quantifier tree for (3)

wherec1, . . . , cn are the children ofn.

It is possible to prove that for each quantifier tree, the key propertyf ≡ qbf(tree(f))
holds. The rest of the algorithm thus safely works ont = tree(f) rather than onf ,
experiencing two classes of benefits (see subsequent paragraphs for details):

– The reduced universal depth of the existential variables will allow to produce sim-
pler instances during Step 3, faster computations during Step 4, and to directly
address a larger class of problems in Step 6.

– The duplication of universal connectives will allow Step 5 to effectively split the
main problem into unrelated subproblems.

As an example, let us consider the following quantified boolean formula and its minimal
quantifier tree depicted in Figure 3.

∀a∀b∃c∀d∀e∃f∃g∃h. (a ∨ ¬c) ∧ (¬a ∨ b ∨ f) ∧ (¬b ∨ ¬f) ∧ (a ∨ h)∧
∧ (c ∨ e ∨ ¬h) ∧ (c ∨ ¬d ∨ g) ∧ (a ∨ c ∨ ¬g) (3)

It is interesting to notice that:

– The formulaqbf(t) represented by this quantifier tree is logically equivalent to the
original formula. Namely:

qbf(t) = ∀a∀b∃f. ((¬a ∨ b ∨ f) ∧ (¬b ∨ ¬f)) ∧
∀a∃c. (a ∨ ¬c)∧

(∀d∃g. (c ∨ ¬d ∨ g) ∧ (a ∨ c ∨ ¬g)) ∧
(∀e∃h. (a ∨ h) ∧ (c ∨ e ∨ ¬h))

14



– The universal depth of the existential variables in the prenex form is 2 forc and 4
for f , g andh. In the quantifier tree, universal depth is reduced to 1 forc, and to 2
for f , g, h;

– There is one replicated universal variable immediately below the root (a). Quanti-
fier trees exploit the distributive property of universal quantifiers over conjunctions:
∀a. (f(a, . . .)∧ g(a, . . .)) ≡ (∀a. f(a, . . .))∧ (∀a. g(a, . . .)). In this simple exam-
ple, the transformation allows to consider the two child sub-problems of the root as
completely independent instances (thought they do actually share some variables).

The notion of ordering among quantifiers, dominating quantifiers and universal depth is
adapted to the tree-shaped prefix. By construction, the partial ordering induced by the
prefix of a formulaf is always arestrictionof the ordering≺T defined by its quantifier
treetree(f). In particular, the partial ordering relation between variables (quantifiers)
is defined in such a way thatv ≺T w when the node labeled byw lays in the subtree
rooted atv. The relation between “dominated” and “dominating” changes accordingly.
The dominating quantifiers forv (and for a clauseΓ ) are the ones encountered along
the path from the root ton, i.e. the setding(v) = {d|d ≺T v} (andding(Γ ) = {d|∃v ∈
var(Γ )|d ≺T v}). The dominated quantifiers are those in the subtree rooted atv, i.e.
the setded(v) = {d|v ≺T d}. The universal depthδ(e) of an existential variablee is
the number|ding(e) ∩ var∀(f)| of dominating universal quantifiers.

3.3 Step 3: Symbolic Skolemization

The aim of this step is to translate the problem fromQBF to a symbolic representation
of aPROP instance.

The Skolem theorem is employed to translate the tree-shaped representationt = tree(f)
produced by Step 2 into a compact,symbolicrepresentation of a purely existential in-
stance which is equivalent tof as to satisfiability.

There are three main ingredients here: (1) theSkolem theoremand its use in the present
context, (2) the way symbolic representations for the problems are introduced and man-
aged, and (3) the role of the stree-shaped structure produced during Step 2.

3.3.1 Propositional Skolemization. In the framework ofFirst Order Logic (and
other logics as well), the Skolem theorem is employed to resort to a purely existential
(purely universal) formula while retaining satisfiability equivalence. This transforma-
tion is especially useful to automate deduction, and this is indeed the reason why we
utilize it now.

The Skolem theorem—as applyed toFOL formulas—introducesSkolem functions
andSkolem constantsthat have no direct representation inPROP . Even if no syntactic
tool exists to directly represent such functions, they are not beyond the expressive power
of PROP , at the expense of an exponential blowup in the size of the instance. We adopt
apropositional skolemizationin three steps:

1. translation of theQBF instancef into an equivalentFOL instanceFOL(f).
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2. application of the Skolem theorem toFOL(f) to obtain a (satisfiability preserving)
FOL instanceSk(FOL(f)) with no universal quantifier.

3. compilation ofSk(FOL(f)) into an equivalent SAT instanceProp(Sk(FOL(f))).

The first step (translation toFOL) is just syntactic sugar, but it allows to plainly cap-
ture the intuition of a purely propositional skolemization. Skolem funtions leverage the
existence of two semantics levels inFOL, namely the level ofpredicatesand the level
of terms. Skolem functions are terms that are substituted for other terms (the existential
variables) as arguments of predicates.QBF andPROP lack both the syntactic tools
and the interpretation mechanism necessary to cope with those two levels. They just
feature the predicate level, though this is slightly obfuscated by their variable-oriented
syntax.

To uncover such level, we introduce aFOL unary predicateb/1 defined over the
boolean space{0, 1}, and interpreted asb(0) = FALSE, b(1) = TRUE, and restrict
the domain of interpretation of every variable to be the boolean space as well. This
immediately allows us to rewrite aQBF formula as a syntactically correct and logically
equivalentFOL formula. For example, we rewrite theQBF formula

∀x∃y∀z∃k. (x ∨ y) ∧ (¬x ∨ ¬y ∨ z) ∧ (y ∨ ¬z ∨ k) ∧ (¬k ∨ z)

as aFOL formula

∀x∃y∀z∃k. (b(x)∨b(y))∧(¬b(x)∨¬b(y)∨b(z))∧(b(y)∨¬b(z)∨b(k))∧(¬b(k)∨b(z))

In the second step (skolemization), we eliminate existential variables by substituting
to each existential variablev a different Skolem functionsv, depending on the proper
subset of dominating universal quantifiers. We obtain a satisfiability-equivalent (not
logically equivalent) purely universal formula.

∀x∀z. (b(x) ∨ b(sy(x))) ∧ (¬b(x) ∨ ¬b(sy(x)) ∨ b(z))∧
∧ (b(sy(x)) ∨ ¬b(z) ∨ b(sk(x, z))) ∧ (¬b(sk(x, z)) ∨ b(z))

It is interesting to notice that from aFOL point of view, existential quantifiers are
simply disappeared, and that the dute we pay for this simplification is the loss of logical
equivalence. From a higher-level point of view, we can predicate over the interpretation
of terms and explicitly state what the Skolem theorem implicitly says when it reduces
the satisfiability ofFOL(f) to the satisfiability ofSk(FOL(f)), i.e. that eachinner
existentialFOL quantification overv has been substituted by anouter higher-order
existential quantification oversv (over the existence of a proper interpretation for the
Skolem terms we have introduced). Informally:

∀x∃y∀z∃k. f(x, y, z, k) ⇐⇒ [∃sy∃sk]∀x∀z. f(x, sy(x), z, sk(x, z))

In the third step (translation toPROP ), the actual work is done. It amounts toflatten
the two semantics levels above onto one single propositional level. This transformation
is made easy by the constructive property that for every formulaSk(FOL(f)) (where
f ∈ QBF ) both the predicate-level interpretation and the term-level interpretation map
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boolean spaces onto boolean values. We may join their definition spaces and inter-
pretation functions, and give an inductive translation procedure fromSk(FOL(f)) to
PROP .
The only non-trivial piece of work consists of building a CNF propositional represen-
tation for every Skolem function. As a constructive consequence of steps 1-2, every
Skolem functions(a1, a2, . . . , an) we manage is a relations over{0, 1}n+1 that maps
{0, 1}n onto{0, 1}. Each one is completely specified by2n boolean parameters giving
the truth value of the function on each point of its domain, so22n

different Skolemn-
ary functions exist. Let us denote bysA the boolean parameter that represents the truth
value of a booleann-ary functions evaluated inA, where each single pointA in the def-
inition domain ofs is conveniently represented by a string ofn bits{A1, A2, . . . , An}.
We directly obtain a CNF propositional encode fors as follows:

Prop(s(a1, a2, . . . , an)) =
∧

A∈{0,1}n

sA ∨ ¬A1⊗a1 ∨ ¬A2⊗a2 ∨ · · · ∨ ¬An⊗an

Let us consider as an example the binary Skolem functions(a, b). It is

Prop(s(a, b)) = (s00 ∨ ¬a ∨ ¬b) ∧ (s01 ∨ ¬a ∨ b) ∧ (s10 ∨ a ∨ ¬b) ∧ (s11 ∨ a ∨ b)

The propositional formulaProp(s(a, b)) may be seen as a function mapping a point
〈a, b〉 ∈ {0, 1}2 in the domain ofs onto the proper truth valuesab.

The next step is to extend the propositional encoding from the level of terms to
the level of predicates. We limit our attention to the encoding of aFOL clause in
Sk(FOL(f)) into a satisfiability equivalent set of propositional clauses (the encoding
of the union of a set ofFOL clauses being just the union of the encodings of each
clause).

Let us first consider the simple case of a clause containing only one existentially
quantified variablee:

∀u1∀u2 · · · ∀un∃e. p1⊗ui1 ∨ p2⊗ui2 ∨ · · · ∨ pr⊗uir
∨ e

where{ui, i = 1, . . . , n} are all the universal variables dominatinge, while {uij
, j =

1, . . . , r, r ≤ n} is the subset of such variables that appear in the clause with polar-
ities p1, p2, . . . , pr respectively. The existential literale is assumed to be positive for
simplicity.
By substitutingthe propositional versionProp(s(u1, . . . , un)) of the Skolem function
s : {0, 1}n → {0, 1}, defined by the2n boolean parameters{s0...00, s0...01, · · · , s1...11}
for e, we obtain:

∃s0...00∃s0...01 · · · ∃s1...11

∀u1∀u2 · · · ∀un

p1⊗ui1 ∨ p2⊗ui2 ∨ · · · ∨ pr⊗uir∨
∨

(∧
A∈{0,1}n sA ∨ ¬A1⊗u1 ∨ · · · ∨ ¬An⊗un

)
As a consequence of the semantics flattening we have performed, the “meta” existential
quantifier over ann-ary Skolem function has been transformed into a set of2n outer
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existential quantifiers. In the worst case, we have to distribute the conjunction over all
the clauses in the last term, thus obtaining2n clauses. Fortunately, some (many) of
those clauses are trivially satisfied by complementary literals. In particular, whenever
Aij⊗pj = 1 for at least onej ∈ {1, . . . , r}, the clause is satisfied, so that we get only
2δ(e)−r clauses. Moreover, skolemized clauses no longer contain existential variables
dominated by universal variables, hence all the universal literals areforall reducible. As
a result of these two properties, we obtain the set of unit clauses:

∃s0...00∃s0...01 · · · ∃s1...11.
∧

A ∈ {0, 1}n

∀j.Aij
⊗pj = 0

sA

In the general case we have clauses containingm existential variables{e1, e2, . . . , em}
with δ(e1) ≤ δ(e2) ≤ . . . ≤ δ(em) and polaritiesq1, . . . , qm, where eachei is domi-
nated by a set∪i

j=0Uj of universal variables. Each clause also contains a possibly empty
subset of universal variables{uk, k = ij−1 + 1, . . . , ij} ⊆ Uj for eachj = 1, . . . ,m,
with i0 = 0 and polaritiespk. The general shape for the clause is

∀U1∃e1 · · · ∀Um∃em. p1⊗ui1 ∧ · · · ∧ pj1⊗uij1
∧ q1⊗e1 ∧

pj1+1⊗uij1+1 ∧ · · · ∧ pj2⊗uij2
∧ q2⊗e2 ∧

...
pjm−1+1⊗uijm−1+1 ∧ · · · ∧ pjm

⊗uijm
∧ qm⊗em

(4)

By (a) propositionally skolemizing all the existential variables in such clause (the order
does not matter), and (b) applying forall reduction to all the variables in∪m

j=0Uj , we
obtain:

∃S1 · · · ∃Sm.
∧

A ∈ {0, 1}δ(em)

∀j.Aij⊗pj = 0

q1⊗s1
A|δ(e1)

∧ q2⊗s2
A|δ(e2)

∧ · · · ∧ qm⊗sm
A|δ(em)

(5)

wheresi
A is a boolean parameter representing the truth value overA ∈ {0, 1}δ(ei)

of the Skolem functionsi introduced forei, andSi = {si
A. A ∈ {0, 1}δ(ei)}, while

A|k denotes thek-bit long prefix of the binary vectorA. We denote byPropSk(·) the
translation function

PropSk : QBF −→ PROP

that applied to a generic QBF clause represented by Expression (4) yields the result
of our three-step translation, i.e. the set of clauses represented by Expression (5). The
cardinality of this clause set is2δ(em)−jm .

To skolemize an entire formula, we observe that Skolem functions are introduced once
per variable, not once per clause. So, the propositionally skolemized version of any
formula is obtained by joining together the skolem clauses obtained out of eachQBF
clause, always re-using the same skolem function parameters for the same existential
variable. The overall skolemization procedure may thus be seen as a mapping between
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the originalQBF space and a purely propositional space defined over the variablessi
A.

As an example, suppose we want to propositionally skolemize3 the formula

∀x∃y∀z∃k. (x ∨ y ∨ ¬k) ∧ (¬x ∨ z ∨ k) ∧ (¬y ∨ ¬k) (6)

We obtain the following propositional instance:

∃sy
1∃sk

01∃sk
10∃sk

11. (sy
1 ∨ ¬sk

10) ∧ (sy
1 ∨ ¬sk

11) ∧ (sk
01) ∧ (¬sy

0 ∨ ¬sk
00)∧

∧(¬sy
0 ∨ ¬sk

01) ∧ (¬sy
1 ∨ ¬sk

10) ∧ (¬sy
1 ∨ ¬sk

11)
(7)

Now, suppose we find a model for (7). We would then be entitled to conclude that the
skolemized version of (6):

∀x∀z. (x ∨ sy(x) ∨ ¬sk(x, z)) ∧ (¬x ∨ z ∨ sk(x, z)) ∧ (¬sy(x) ∨ ¬sk(x, z)) (8)

is satisfiable, hence that (6) is satisfiable. Not only we are ensured that a proper inter-
pretation for the Skolem functionssy/1 andsk/2 do exist to satisfy the formula, but we
haveexplicitily computedsuch an interpretation. The model for (7) indeed gives us the
desired truth value of each skolem function over each point of their domains (for mod-
els that are partial assignments, unassigned variables corresponds to don’t-care values
in the truth table of the corresponding skolem function). As we will see in Section 5.3.3,
this information will be used bysKizzo to construct a model for (6).

3.3.2 Symbolic Representation.The ground CNF translation of aQBF problem
may be exponentially larger than the originating instance. As a consequence, not only it
may be unfeasible to solve the resulting SAT instance, but it might not even fit into the
memory of any real machine (space explosion). Without some powerful tool for com-
pactely representing and managing propositional skolemizations, the resulting ground
instances are definitely out of reach.

The term “symbolic representation” has a broad AI-related sense, but it is used with a
much more specific meaning in the realm of model checking (MC). According to MC’s
usage of the word, a symbolic representation is one that allows to shift fromexplicit
MC techniques—where each state of a system to be checked is individually represented
and manipulated—tosymbolicMC approaches—where data structures are employed
that allow to compactly and implicitly represent (possibly huge) sets of states, and also
to reason about them as a whole. We adopt MC’s viewpoint here.

We are interested in symbolically representing and manipulating sets of clauses. Re-
lated approaches do exist in the literature (see Section 5.1), but we have to manage
a very special case here. In particular, we are only interested in representingsets of
clauses arising from the propositional skolemization of aQBF formula, with a rep-
resentation that isclosedunder the symbolic operations applied in Step 4 and 5 (see

3 We don’t mix propositional skolemization and tree-shaped prefixes until Section 3.3.3, so this
formula is to be considered as a prenex CNF.
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Section 3.4 and 3.5). Our representation employes one singlesymbolic clauseto com-
pactly represent the whole clause set described by the expression (5). So, we have a
one-to-one correspondence between symbolic clauses and originalQBF clauses.

To represent the set of clauses described by expression (5) we need to memorize
three pieces of information:

1. Theorderedlist Γ = [q1⊗e1, . . . , qm⊗em] of existential literals in the originating
QBF clause;

2. Theset of indexesI = {A ∈ {0, 1}δ(em) | ∀j.Aij⊗pj = 0};
3. The list [δ(e1), . . . , δ(em)] of universal depths together with the sets∪i

j=0Uj of
universal variables dominating each existential variable.

The information in Item 3 is not related to a single clause. Rather, it is an attribute of the
formula as a whole that only depends on the set of dominating variables for the literals
at hand. The prefix of a prenex formula (or the quantifier tree for a structured formula),
suffices to extract this information for every clause.

By contrast, the information in Items 1 and 2 actually define asymbolic clause
symb(C) obtained by theQBF clauseC, which we compactly denote by writingΓI .
So, the symbolic transformation

symb : QBF −→ QBFSY MB

maps QBF instances onto symbolic instances belonging to the space ofsymbolic QBF
instanceswhich we denote byQBFSY MB . The inverse function reconstructs a QBF
clausesymb−1(ΓI) out of a symbolic clause. The propositional skolemization is ex-
tended to symbolic clauses asPropSk(ΓI) .= PropSk(symb−1(ΓI)).

For example, the matrix of the propositionally skolemized formula (7) is compactly
represented as:

[y,¬k]{00,01} ∧ [k]{01} ∧ [¬y,¬k]{00,01,10,11} (9)

Each symbolic clause is made up ofsymbolic literals4, that we represent as symbolic
unit clauses, possibly omitting the square braces. For example, the symbolic clause
[y,¬k]{00,01} is made up by the symbolic literalsy{0} and¬k{00,01}. We say that a
symbolic literalγI belongs to a symbolic clauseΓJ , written γI ∈ ΓJ , whenγ ∈ Γ
andI ⊆ J .

A symbolic formula has both asymbolic sizeand aground size. The symbolic size
is the number of symbolic clauses (symbolic literals) in the formula. The ground size is
the number of clauses and literals in the plain propositional instance the symbolic for-
mula stands for. So, the symbolic size (number of clauses) for a symbolic formulaf is

4 We could have introduced concepts the other way around, i.e. by defining symbolic clauses
in terms of symbolic literals. However, all the symbolic literals in a symbolic clauseΓI share
the same set of indexesI. It is simpler to break a clause into literals that inherit indexes than
defining composition rules for obtaining correct symbolic clauses. Moreover, each bit ini ∈ I
“suddenly” refers to some universal variable, and a linear shape suffices to identify which one
just because clauses are attached to the proper point in the quantifier tree. As a result, arbitrary
compositions of symbolic literals may not represent meaningful symbolic clauses.
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[c,¬e]
b

0 1 d

0 1

b

a[e]

Fig. 4.Symbolic representations for the skolemized version of two clauses clausesb∨ c∨¬e (on
the left) and¬a ∨ ¬b ∨ d ∨ e (on the right) under the relevant prefix∀a∀b∃c∀d∃e.

|f |symb =
∑

ΓI∈f |Γ |, while its ground size is|f |ground =
∑

ΓI∈f |I|. For example,
the formula (9) has symbolic size equal to3 and ground size equal to7. The ground size
is always greater than the symbolic size, as each symbolic clause represents at least one
ground clause.

As a second layer of symbolic representation, we compactly represent index sets by
means ofbinary decision diagrams(BDDs) defined over the setV ar∀(f). According
to the semantics of BDDs, an entire setI = {A ∈ {0, 1}δ(em) | ∀j.Aij

⊗pj = 0} is
represented by a single linear-sized BDD (inm) requiring one internal node for each
universal variable in the originatingQBF clause. Hence, the whole symbolic clause
has a linear size w.r.t. the number of literals in the originatingQBF clause. Figure 4
depicts our symbolic representation for two sample clauses.

Given that the size of each clause is linear in the size of the originatingQBF clause,
and that we produce only one symbolic clause for eachQBF clause,the symbolic size
of symb(f) is linear in|f |. However, this only holds for theinitial symbolic representa-
tion. The symbolic size may increase as a consequence of the manipulations described
in Section 3.4.

3.3.3 Quantifier Tree. The main role of the quantifier tree constructed in Step 3 is to
reduce the dimensionality of the Skolem terms. Let us consider again the formula

∀a∀b∃c∀d∀e∃f∃g∃h. (a ∨ ¬c) ∧ (¬a ∨ b ∨ f) ∧ (¬b ∨ ¬f) ∧ (a ∨ h)∧
∧ (c ∨ e ∨ ¬h) ∧ (c ∨ ¬d ∨ g) ∧ (a ∨ c ∨ ¬g)

and its syntactic tree depicted in Figure 3.
According to the linear prefix∀a∀b∃c∀d∀e∃f∃g∃h, we should introduce—among

the others—the skolem functionssc(a, b) andsh(a, b, e). But, certain dependencies are
artificially forced by the linear shape of the prefix. According to the quantifier tree,
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it suffices to introducesc(a) and sh(a, e). So, when introducing Skolem functions,
sKizzo always looks at the quantifier tree to select as few arguments as possible.

The path from the root to the node where a clause is attached defines therelevantprefix
for that clause. Along the relevant prefix for a clause we encounter all the existen-
tial variablese1, e2, . . . , en in that clause;beforeeach existential variableei, we also
encounter all the dominating universals forei. These sets of dominating universals, to-
gether with the sequence of universal depthsδ(e1) ≤ δ(e2) ≤ · · · ≤ δ(en), are the
missing information to interpret a symbolic clause and reconstruct its ground meaning.
In fact, by expression (5), each index setI for a literalγI is a subset of{0, 1}δ(γ), where
thej-th bit ij in everyi ∈ I corresponds to thej-th dominating universal quantifier for
γ. By adopting such convention, we obtain two related effects:

1. we simplify the notation for symbolic clauses, and avoid representing redundant
information (i.e. to duplicate the information on the relevant sets of dominating
universals in each symbolic clause);

2. symbolic clauses are not self-contained objects, as we need to refer to the quantifier
tree to extract their ground meaning.

The second point would be of no importance for a linear, prenex formula, because the
meaning of thej-th bit in any index would be same for every literal (and every clause).
When we move to a tree-like syntactic structure, this property fails to be true, as the
meaning of each bit also depends on the branch of the tree the literal lays on.

Most manipulations we perform over symbolic clauses and literals only involve
symbolic objects on the same branch, so the above notation is unambiguous. But a few
of these operations (namely, those described in Section 3.4.3 and Section 3.4.4) may
involve clauses attached to different branches.

To make operations among generic index sets unambiguous, we redefine the notion of
projection and selection in terms of an underlying interpretation for index sets that refers
to the whole set of universal variablesV ar∀(f) = {u1, u2, . . . , un}. We interpret each
index setI ⊆ {0, 1}m relative to the universal variablesuj1 , uj2 , . . . ujm

, as a subset
UI ⊆ {0, 1}|var∀(f)|, where〈p1, p2, . . . , pn〉 ∈ UI iff an index i = 〈i0i1 . . . im〉 ∈ I
exists such thatik⊗pjk

= 0 for i = 1, . . . ,m. The complement setUI of UI is
{0, 1}|var∀(f)|\UI . The projectionUI |e of UI onto the existential variable (or literal)e
with dominating universalsuj1 , uj2 , . . . ujm is the set{〈i1i2 . . . iδ(e)〉 | ∃〈p1, p2, . . . , pn〉 ∈
UI with ik = pjk

, k = 1, . . . , δ(e)} ⊆ {0, 1}δ(e). Finally, byselectingUI with an uni-
versal literall = q⊗uk (on the variablevk with polarity q ∈ {0, 1}) as a condition, we
obtain the setUI ∗ l = {〈p1, p2, . . . , pn〉 ∈ UI | pk = q}.

For objects laying on the same branch of the tree, we maintain a light notation. For
example, given any two symbolic literalsαI andβJ on the same branch, we write
αI∩J to meanα(UI∩UJ )|α .

3.4 Step 4: Symbolic Normalization
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The aim of this step is to (attempt to) decide the symbolic instance produced during the
previous step (hence, to decide the satisfiability of the originalQBF problem).

It works by computing the deductive closure of a set ofsymbolic inference rules. When
the set of rules adopted is not refutationally complete, instances exist that stay unde-
cided at the end of the current step. In these cases, however, a satisfiability-equivalent,
symbolic output formula is generated that is guaranteed to show a (much)smaller
ground sizethan the input formula. The aim of this step may thus be seen as an at-
tempt to reduce the complexity of the problem that Steps 5 and 6 will have to manage.

Thought symbolically represented, the formula we face is a purely existential CNF
propositional instance attainable via thePropSk function. The inference rules we adopt
need to add nothing to the well-known inference systems described in the literature to
simplify/decide such “ground” formulas. Rather, the emphasis is on designing symbolic
versions of the standard rules that work without expanding symbolic clauses to ground
clauses, symbolic literals to ground literals, and so on. In essence, it is a matter of
defining how the basic steps (subsumption, resolution, assignments substitution, etc.)
and their compositions can be performed at a purely symbolic level (i.e.: on sets insted
of on single set’s elements).

We may figure out what symbolic reasoning does by referring to the following com-
mutative diagram (whereNormR(·) denotes the subset of normalized formulas w.r.t a
set of inference rulesR).

QBFSY MB
PropSk−−−−−→ PROP

symbolic inferences

y ystandard inferences

NormR(QBFSY MB) −−−−−→
PropSk

NormR(PROP )

Symbolic reasoning consists in walking the diagram top-down first, then left-to-right.

The first step towards symbolic reasoning amounts to extend the star operator intro-
duced in Section 2.5 to the case of symbolic clauses and symbolic literals. This is done
as follows.

ΓI ∗ lJ =


ΓI∩J whenl ∈ Γ
ΓI∩J ∧ Φ(I∩J )|δ(Φ)

with Φ = Γ \ {¬l}, when¬l ∈ Γ

ΓI otherwise
(10)

The following inference rules build on top of the symbolic star operator.

3.4.1 SUCP: Symbolic Unit Clause Propagation.The SUCP rule is the simplest
one. It builds on top of the observation that each symbolic unit clause[γ]I in the for-
mula represents a set{γi|i ∈ I} of ground unit literals. All of them need to be assigned
to avoid contradictions. These assignments can be performed all-at-once by simply ex-
ploiting the symbolic star operator. See Algorithm 2.
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input : A symbolic formulaf

output: A symbolic formulaf ′
SAT≡ f with no unit clause

while [γ]I ∈ f and⊥/∈ f do
f ← f ∗ γI ;

end

Algorithm 2 : A basic version of the symbolic unit clause propagation rule

input : A symbolic formulaf

output: A symbolic formulaf ′
SAT≡ f with no pure literal

V← var∃(f);
while V 6= ∅ andf 6= ∅ do

pick onev ∈ V;
P← ∅;
foreach ΓI ∈ f such thatv ∈ Γ do

P← P ∪ I|δ(v);
end
N← ∅;
foreach ΓI ∈ f such that¬v ∈ Γ do

N← N ∪ I|δ(v);
end
I+ ← P ∩ N;
I− ← N ∩ P;
foreachΓI ∈ f such thatvI+ ∈ ΓI or ¬vI− ∈ ΓI do

foreachγ ∈ Γ do
V← V ∪ var(γ);

end
end
V← V \ {v};
f ← f ∗ vI+ ;
f ← f ∗ ¬vI− ;

end

Algorithm 3 : A basic version of the symbolic pure literal elimination rule

3.4.2 SPLE: Symbolic Pure Literal Elimination. The SPLE rule does what we
would expect from the standard rule, but performs its job in a purely symbolic manner.
It (a) constructs a complete symbolic representation of the set of everypure ground
literal, and (b) applies this literal to the formula. The simplest way5 to perform symbolic
PLE is reported in Algorithm 3.

5 On the implementation side, the simplest way might fail to be the best way. Thought quite
intuitive, Algorithm 3 sometimes gets into troubles because big BDDs are generated as inter-
mediate results. So, we also designed a step-by-step version that (a) computes pure literals out
of each clause (rather than for each variable), and (b) always manages several (still unfinished)
computations at once, with a greedy, cost-minimizing scheduler to control the job.
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input : A symbolic formulaf

output: A symbolic formulaf ′
SAT≡ f normalized w.r.t SHBR

continue← TRUE;
while continue andf 6= ∅ do

continue← FALSE;
G← the symbolic implication graph overf ;
foreachsource nodes ∈ G do

foreachpaths = a0
I1−→ a1 · · ·

In−1−→ an−1
In−→ an in G with an = ¬ak do

UI ← ∩n
j=k+1UIj ;

if UI 6= ∅ then
I ← UI |a;
f ← f ∗ ¬aI ;
if new binary clause createdthen

continue← TRUE;
end
if ⊥∈ f then

return UNSAT;
end

end
end

end
end
return f ;

Algorithm 4 : The symbolic hyper binary resolution algorithm

3.4.3 SHBR: Symbolic Hyper Binary Resolution. The SHBR rule enumerates all
the resolution chains of symbolic binary clauses, looking forfailed symbolic literals,
i.e. for literals¬aI such that each¬ai ∈ ¬aI can be derived (via a finite number of
resolution steps only involving binary clauses) as a consequence of the hypothesisai.
Each ground literal inaI generates a contradiction (f ∗ ai is UNSAT for everyi ∈ I),
so we force the opposite symbolic assignment, thus shifting our attention ontof ∗¬aI .

To compute all the failed literals we employ an approach similar to the standard one
for propositional logic (see Section 5.1). We build asymbolic implication graph, which
has a node for each positive and negative existentially quantified variable in the original

formula, and a couple of arcsa
I−→ ¬b andb

I−→ ¬a for each binary symbolic clause
[a, b]I . So, unlike standard implication graphs, symbolic graphs featurelabeled arcs.
The arc originating from[a, b]I is labeled byI. Should an arc be originated from more
than one clause, it would be labeled by theunionof the sets of indexes of each clause.

Each symbolic arca
I−→ b represents a set ofground arcs{ai|δ(a)

−→ bi|δ(b)
, i ∈ I}.

At this point, following the two-level symbolic representation of clauses, we employ
a two-step algorithm for extracting symbolic failed literals (see Algorithm 3.4.3):

1. We discover all thepotentialfailed literals by discarding the labels on the arcs. A
depth-first, non-redundant visit starting from eachsourceof the graph is employed.
A potential failed literala is one for which we have encountered the following

(portion of a) resolution path:a
I1−→ a1

I2−→ · · · In−→ ¬a;
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2. As each symbolic arc represents a set of ground arcs, a symbolic path froma to
¬a in the symbolic implication graph represents a (possibly empty) set of ground
paths. We are interested in symbolically extracting all such ground paths, by (a)
intersecting the indexes encountered along the path, and (b) projecting the resulting
set onto the index domain relevant toa.

It is interesting to note that a failedn-step path over a symbolic implication graph im-
mediately maps onto a sequence ofn + 1 nodes in the quantifier tree of the formula
(where the first node is equal to the last one) which we call aloop. Every two subse-
quent nodes in this loop always lay on the same branch (because an arc is originated
from a binary clause which by construction is attached to its lowest existential variable
in a branch where the other one isalreadyappeared). So, the loop is made up of top-
down and bottom-up steps, but nolateral step is allowed. Bottom-up steps may only
follow the path towards the root, as the underlying structure is a tree, while top-down
steps may “choose” a branch whenever more than one is given. As a consequence, loops
made up of at least 4 steps may cover a subtree of the quantifier tree, not just a linear
branch. This means that the definition domains of the symbolic literals involved in a
chain of derivations are not necessarily sub-domains of one another. The extraction of
anactual failed literal from a potential failed literal takes into account this property by
exploiting the notions introduced in the last part of Section 3.3.3.

The rules described so far only rely on symbolic assignments. The next rule in addition
requiressymbolic equivalency, which we now introduce informally. A symbolic literal
aI|δ(a)

is equivalent to a symbolic literalbI|δ(b)
when (1)a and b lay on the same

branch of the quantifier tree, and (2) for eachi ∈ I, ai|δ(a)
↔ bi|δ(b)

is a consequence
of the formula. When this happens, we can simplify the formula by substituting each
occurence ofaI|δ(a)

with bI|δ(b)
(or vice-versa).

Clauses may fall into one of three classes when a standard propositional substitu-
tion is applied: (1) those which remain untouched, (2) those which only contain the
substituted literal and thus exchange one literal for another, and (3) those which con-
tains both variables involved in the substitution, and may thus be either (3a) satisfied
(when the substitution generate a couple of opposite literals) or (3b) shortened (when
the substitution generates two copies of the same literal).

This three-fold consequence of substitution stays the same in the symbolic case,
with the caveat that symbolic clauses actually represent sets of ground clauses and lit-
erals, and symbolic substitutions represent sets of equivalencies over ground literals.
In general, it is not the case that the whole set of literals (if any) in a symbolic clause
is covered by the substitution. This means that in the case (2) and (3b) above we may
obtaintwosymbolic clauses out of each originating clause after substitution is applied.

3.4.4 SER: Symbolic Equivalency Reasoning.The SER rule works on the very
same symbolic implication graph used during SHBR. It aims at identifying sets of sym-
bolic literals that are equivalent to one another. Thereafter, symbolic equivalency is
applied to simplify the formula. Following the two-level symbolic representation of
objects insKizzo we employ a two-step algorithm to perform symbolic binary equiva-
lence reasoning:
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input : A symbolic formulaf

output: A symbolic formulaf ′
SAT≡ f normalized w.r.t. SER

continue← TRUE;
while continue do

continue← FALSE;
G← the binary implication graph overf ;
SCC← the set of strongly connected components inG [Kosaraju, Sharir];
foreachS ∈ SCC do

lits← the set of literals inS;
while lits 6= ∅ do

m← one literal inlits with the maximal universal depth;

foreach loopa0
I1−→ a1 · · ·

In−1−→ an−1
In−→ a0 in S with m = a0 do

UI ← ∩n
j=0UIj ;

if UI 6= ∅ then
if ∃i∃j.ai = ¬aj then

return UNSAT;
else

a← oneai with the minimal universal depth;
Ia ← UI |a;
foreach b = aj , b 6= a do
Ib ← UI |b;
Apply equivalencyaIa ↔ bIb to f ;
if new binary clause created by step (3b)then

continue← TRUE;
end

end
end

end
end
lits← lits \ {m};

end
end

end
return f ;

Algorithm 5 : The symbolic equivalency reasoning algorithm

1. First, we extract all thestrongly connected components(SCCs) from the implica-
tion graph, discarding labels on arcs. In the standard propositional case, each SCC
identifies an equivalence class over the set of literals, but this would be a too strong
conclusion were it directly applied to symbolic literals: in the propositional case,
any two node in a SCC are part of a non-intersecting loop entirely belonging to
the SCC, and this is the reason why they are equivalent. In the symbolic case, any
two ground literals in a SCC belong to some symbolic loop; this is anecessary
condition for equivalence, but their actual equivalence has to be tested;

2. To test the equivalence of literals in each SCC, we cannot consider the component
as a whole (we would reach a too weak conclusion by assuming that the equivalency
of literals stem by traversingall the symbolic arcs); rather, we have toenumerate
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the loops belonging to the SCC, and for each symbolic loop we have to compute
the actual set of ground loops it stands for (using the same technique as in HBR).

A significant difference w.r.t. the standard propositional case comes into play at this
point. What ER does in that case is to extract one representative literal out of each
equivalency class and then apply substitution. The selection is done arbitrarily, as all
literals are equivalent: the formula resulting after substitution is the same whichever
literal is chosen (apart from the name of the variable representing the class of equiva-
lence). This is not true for the symbolic case, because two equivalent symbolic literals
may be defined over Skolem domains of different dimensionality (thus generating a dif-
ferent set of ground literals and clauses). So, after we have tested that the symbolic loop
is non-empty, we still need to select a representative literal from that loop.

In addition to this, when we move from the SCC-as-a-whole technique to the ex-
traction of a sequence of loops in the SCC, we implicitly generate anorderingamong
substitutions whose effect is worth considering.

Our answer to these degrees of freedom aims at reducing the ground size of the re-
sulting formula, and is given in Algorithm 5. Note that the correctness of this algorithm
relies on a hidden property, i.e. that the minimal-depth literal in every loop over the
quantifier tree always dominates all the other literals in the same loop.

3.4.5 Notes on symbolic inferences.Step 4 might be forced toenlargethe size of its
own representation of the problem in order to reduce the size of the instance that Step 5
and 6 will have to manage. It is possible indeed for a smaller ground instantiation of the
problem to correspond to a more complicated symbolic representation for the problem
itself. There are two major sources of enlargement, reflecting the two-level symbolic
representation of the clauses:

– Set representation is done via BDDs. It is well known that the size of a binary
decision diagram is not directly related to the size of the set it represents [76]. For
the initial symbolic skolemization, this size is linear (see Section 3.3.2), but when
the star operator and the other rules are applied, BDDs start representing “non-
convex” sets of indexes. Though smaller as to ground size, these sets may require
more space at the symbolic level (see experimental results at Section 4.3).

– Symbolic assignments may split each single symbolic clause they touch into cou-
ples of clauses, in such a way that even if the overall ground cardinality is never
increased, the number of symbolic clauses may grow, and their memory represen-
tation is enlarged as well.

We also notice that there is a class of formulas that can be decided without requiring
more than what can be done during Step 4. In general, this class is implicitly defined by
the inference power of the combination of the symbolic rules we adopt. In particular,
at least all the instances that contain no more than two existentially quantified variables
per clause are decided during this step. This is a consequence of two properties of the
standard rules for binary reasoning inherited from their symbolic counterparts. Namely:

– A PROP formula only containing2-clauses is satisfiable iff no contradiction is de-
tected during hyper binary resolution;
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Fig. 5. The top-most part of an AND/OR, divide-et-impera search tree for the formula
∀a((∃b(∀c f1(a, b, c)) ∧ ∀d f2(a, b, d)) ∧ ∀c∀e f3(a, c, e))

– A PROP formula only containing2-clauses is satisfiable iff no SCC contains a
variable in both polarities6.

3.5 Step 5: Symbolic Divide-et-Impera

The aim of this step is to apply a systematic procedure to decide all the problems that
no previous step has been able to decide.

The procedure we apply employs a top-down strategy that is best described in an induc-
tive manner (see Algorithm 6):

6 For the symbolic case this is just a necessary condition. As we saw, it is also necessary that
both literals lay on a ground cycle contained in that SCC.
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Algorithm 6 : symbDecide

input : A tree-shaped symbolic formulat
output: A SAT/UNSAT answer

begin
// normalization performed by Step 4
tnorm ← normalize(t);
if tnorm = ∅ then

outcome← SAT

else if⊥∈ tnorm then
outcome← UNSAT;

else
if groundVersionIsAffordable (tnorm) then

groundCnf← PropSk(tnorm);
outcome← SatSolver.solve (groundCnf);

else
l← labelattherootoftnorm;
if (l = “ ∧ ”) then

outcome← SAT;
foreachchild subtreet′ of tnorm do

outcome← outcome andsymbDecide (t′);
end

else
leftOutcome← SAT;
foreachchild subtreet′ of tnorm do

leftOutcome← leftOutcome andsymbDecide (t′ ∗ l);
end
rightOutcome← SAT;
foreachchild subtreet′ of tnorm do

rightOutcome← rightOutcome andsymbDecide (t′ ∗ ¬l);
end
if isUniversal(l) then

outcome← leftOutcome andrightOutcome;
else

outcome← leftOutcome or rightOutcome;
end

end
end

end
return outcome ;

end

base case 1When symbolic normalization suffices to solve the instance, report the
symbolic solution.

base case 2When the instance can be addressed in aground way, just do it.
inductive case When no base case applies, divide the instance into smaller sub-instances

according to the quantifier tree, and report that the whole instance is SAT iff each
sub-instance is SAT.
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The inductive case deals with two conceptually different trees: the syntax-related quan-
tifier tree of the symbolic formula, and the semantics-related AND/OR search tree that
is visited to decide the instance. The former is explicitly manipulated as a parameter, the
latter is implicitly explored via the recursive structure of the decision procedure. The
two trees are related in the sense that each node of the quantifier tree is to be decided by
checking both truth values for the labeling variable (or just one, should lazy evaluation
suffice), while each truth value generates a set of quantifier sub-trees to be recursively
decided. The resulting situation is depicted for a sample case in Figure 5.

To have the whole procedure working we need to extend the meaning of the star operator
when it is applied with a ground universal literalv as a second argument:

ΓI ∗ v =
{

ΓI∗v whenv ∈ ding(Γ )
ΓI otherwise

(11)

where theI ∗ v operation denotes the existential abstraction defined in Section 3.3.3.

3.6 Step 6: Groundization

The aim of this step is to compute an actual compilation to SAT of a symbolic CNF
representation, whenever Step 5 decides to encode sub-problems into SAT instances to
be passed to a SAT solver.

In essence, this step computes thePropSk function by applying expression (5). Al-
tought theorically straightforward, this operation deserves a lot of attention on the prac-
tical side (see Section 4.1.3). Groundization is made up of two steps: (1) generation of
the ground space and (2) generation of the ground clauses.

3.6.1 Ground space generation.The key operation to be performed is to construct
a mapping between thestructured namespaceof symbolic literals and aflat namespace
for ground literals, which is more SAT-solver friendly. This amounts to uniquely as-
sociate a positive integerk (representing a propositional variablepk) to each ground
literal vi that belongs to at least one symbolic clause in the current symbolic formula.
The association should also work the other way around (necessary to model reconstruc-
tion), so we need a bijective function.

In addition to this functional property, we also desire two additionalnon-functional
requirements:

Compactness.The set of integers generated for the formula as a whole should be com-
posed of all and only the integers in the interval[1, n], for some sufficiently largen
(no unused variable code: this is to avoid that the SAT solver allocates unnecessarily
large data structures);

Invertibility. It should be possible to compute both the direct and the inverse mapping
function efficiently (ideally, near toO(1)).
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The signature of the resulting mapping function is

Vmap : D∃ ×D∀ → [1, n]

whereD∃ = var∃(f) andD∀ = {0, 1}|var∀(f)|. The function is partial, as it is defined
only over ground literals actually belonging tof .

3.6.2 Ground clauses generation.OnceVmap is constructed, a clauseΓI , with Γ =
{p1⊗e1, p2⊗e2, . . . , pm⊗em}, is expanded to its ground meaning by producing for each
i ∈ I the ground clause

sign(p1) ·Vmap(e1, i|e1)∧sign(p2) ·Vmap(e2, i|e2)∧ . . .∧sign(pm) ·Vmap(em, i|em
)

wheresign(p) = +1 for p = 1 andsign(p) = −1 for p = 0.

4 Implementation and experimentation

In this section we present a first implementation of our decision procedure and a pre-
liminary experimental evaluation. The interested reader may find further details and a
wider experimentation at [4]. The section is organized as follows. Section 4.1 discusses
our implementation. Section 4.2 introduces other solvers and describes the benchmarks
used for evaluation. Functional results forsKizzo are reported in Section 4.3. Finally,
Section 4.4 focuses on relative solvers’ performance.

4.1 Implementation

sKizzo features a preliminary implementation (current version:sKizzo v0.1 ), which
is a 60k-line piece of code written in C using an object-oriented programming style. It
has been developed from scratch on a 14” iBook running MacOS X 10.3, using Xcode
1.(2-5) as a programming environment, gcc 3.3 as a compiler and Shark 4.0 as a pro-
filer. Such platform has been used to extract the results presented in Section 4.3. The
performance-related experimental results given in Section 4.4 have been obtained on a
different platform. Namely, the whole system has been ported to Linux and tested on a
2.6GHz P4 processor with 1GB main memory, running RedHat 9.3. Compiler version
for the Linux platform is 3.4.
sKizzo relys on two libraries (a C and a C++ library) to perform its work. Figure 6
depicts the interactions amongsKizzo’s steps and the following two libraries:

A BDD package. We employ the CUDD package [72], version 2.4.0, by Fabio Somenzi
(Department of Electrical and Computer Engineering, University of Colorado at
Boulder) which is meant for manipulation of Binary Decision Diagrams (BDDs),
Algebraic Decision Diagrams (ADDs) and Zero-suppressed Binary Decision Dia-
grams (ZDDs).

A SAT solver. We exploit zChaff [52], version 2004.5.13, a state-of-the-art, search-
based SAT solver from the SAT Research Group at the Princeton University.
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Fig. 6. Interaction betweensKizzo and the libraries it exploits

Our implementation produces statistical information for families of instances, and de-
tailed reports of the solution process of single instances, also including the time and
memory requirements per phase. Some steps (such as tree reconstruction and prelim-
inary QBF simplification) may be optionally disabled. On demand, both the recon-
structed syntactic trees and the sets of ground instances produced may be dumped on
secondary memory in a textual format for later analysis.

In the rest of this section, we devote our attention to a few implementation-related issues
that may have a strong impact over the run-time performance ofsKizzo.

4.1.1 Efficiency monitoring. Our implementations of the symbolic inference rules
used during Step 4 show quite instance-depending performances (deductions per time
unit). For example, the pure literal elimination rule is quite slow on certain instances,
while the unit clause propagation quickly attacks the same problem, or vice-versa. All
the rules but PLE may also occasionally lead to an explosion of the number of symbolic
clauses, but this explosion appears to strongly depend on which other rules have already
reached the fixpoint.

Being still absent a theorical framework explaining these and other effects, we de-
cided to temporarily classify this topic as an implementation-related issue. We indeed
resort to a heuristic, on-the-fly scheduling policy for inference rules.
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In particular, we implemented a fix-priority policy with on-the-fly resource con-
sumption monitoring and preemptive interruption capabilities. A fixed priority is as-
signed off-line to each rule, according to some statistical evidences. The scheduler keeps
on picking the highest-priority inference rule that has not yet reached the fixpoint, and
applies it until either the fixpoint is reached, or the rule begins totrash. Trashing is
defined in terms of resource consumption, in particular memory consumption (see be-
low) and time efficiency. The latter measure is computed by monitoring the number
of inferences per second the rule is performing, and the consequences of these infer-
ences both on the symbolic size and on the ground size of the problem. By analysing
the typical behaviour of symbolic rules, we defined for each rule some trashing con-
dition (for example: “PLE is trashing whenever it shows for more thanN contiguous
inference cycles ashrinking ratefor theprojected ground sizeof the problem which is
both monotonically decreasing and constantly below tresholdT ”). When the monitor
decides that a rule is trashing, the rule itself is preemptively interrupted and marked as
a “trashing rule”. Then, the next highest-priority, non-trashing rule (if any) is applied.

The scheduler not only monitors what the currently rule is doing, but it also tracks
what is happening to the rules that are currently inactive (either at the fixpoint or trash-
ing). Inactive rules may indeed loose both their staus of “fixpointed rule” and their
status of “trashing rule” as a consequence of other rules’ behaviour, with consequences
on the rest of the inference trace.

4.1.2 Memory management.The virtual memory facility provided by all modern
operating systems is largely unuseful (if not dangerous) for resolution-basedQBF
solvers. These solvers tend indeed to be memory-eager. When physical memory is over,
the OS—hoping to help—suddenly moves on to the next level of the memory hierarchy
(virtual memory is expanded to the disk). Memory access becomes orders of magnitude
slower and raw performance heavily falls down. The point is thatsKizzo (together with
some other QBF solvers) needs to “contineously” refer to all (or to a great part of) the
information it has stored in memory, so no portion of such information is safely moved
to secondary memory (as opposed to what happens in many other common situations).
The only way of avoiding memory trashing, is to avoid consuming the whole physical
memory.

sKizzo performs a contineous monitoring of memory consumption, with the aim of
avoiding that swap-to-disk even begins. Steps that may consume great amount of mem-
ory are Symbolic Normalization (the number of symbolic clauses increase, BDDs get
larger), Symbolic Divide-et-impera (many symbolic instances at the same time have to
be maintained when deep decision levels are reached), and Groundization (the potential
compilation-to-SAT blow-up gets real). The first two situations are rather uncommon.
They are dealt with as non-recoverable problems.sKizzo surrenders and communi-
cates to the user that memory limitations prevented him from solving the instance. The
last situation——fairly more common—is managed by estimating the memory require-
ments for every SAT instance, before the instance itself is generated. Should those pro-
jected requirements overcome available physical memory, the instance would not gener-
ated and the divide-et-impera procedure would be requested to split the problem at hand
into (more but) smaller sub-problems. This dynamic adjustment creates an interesting
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(and automatic) time/memory tradeoff, whose simplest effect is to produce different ex-
ecution traces (and execution times) on the very same machine by just adding/removing
physical memory (withoutadjusting any parameter).

4.1.3 Mapping to CNF. The mapping function realized by Step 6 is a time-critical
one. It is in general responsible for producing several ground problems per session, each
problem having up to million clauses (each clause in turn made up of several literals to
be translated). It is quite common for the mapping function to be called hundreds mil-
lion times during one session’s lifetime. Also, generation time overcomes solution time
for a large class of instances. For these reasons, a careful engineering of data structure
is necessary. In particular, hash tables and logical properties of the underlying ordered
decision diagrams are heavily exploited. The inverse function is also to be computed ef-
ficiently, as model reconstruction—thought not yet implemented—will be a key feature
of sKizzo.

Another interesting computation in need for efficiency concerns the number of
ground clauses the current symbolic instance would produce, should it be made ground
immediately. A lazy, purely symbolic estimation of the ground size (based on prop-
erties of the BDDs) is performed. This capability is exploited several times, though
performance is a concern only duringefficiency monitoring, due to the high number of
estimations required (see Section 4.1.1).

4.2 Benchmarks and solvers

To evaluatesKizzo we refer to the QBFLIB’s archive [33] maintained by the STAR-lab
group at the University of Genova. This growing set of benchmarks is currently com-
prised of more than 4000 instances and have been used in the “QBF Solver Evaluation”
sessions during SAT03 and SAT04.

In this preliminary evaluation, we focus on a subset of the non-random families of
instances collected in the QBFLIB. In particular, we consider:

Rintanen’s benchmarks [59], the first and best-known collection of QBF problems,
made up of 47 instances divided into 5 families, obtained by encoding planning
problems into QBF. These instances are currently within the solving capabilities of
most state-of-the-art solvers, so they can be exploited to compare the time/memory
requirements of different solvers.

Ayari’s benchmarks [1], made up of 72 instances divided into 5 families, obtained
from real-world verification problems on circuits and protocol descriptions. These
instances are still quite challenging for modern solvers, and some of them have
never been solved.

Biere’s benchmarks [9], made up of 64 instances divided into 4 families; then-th
instance in each family translates a model checking (MC) problem stating an invalid
safety property over ann-bit counter (the optionalresetandenableinputs yield 4
combinations clustered into 4 families). The properties state that the counters never
reach theall-one state starting from theall-zero state (each one thus fails to be
true after2n − 1 steps). Such problems are easy for BDD-based symbolic MC.
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Conversely, they are rather difficult for SAT-based bounded MC techniques, as they
capture the worst-case scenario in which the number of steps necessary to falsify
the property equals the diameter of the system. These instancescould besimple
but effective witnesses of the fact that QBF-reasoning really adds something to
SAT-based methods.

In Section 4.3 we also refer to other families, such us those obtained by encoding modal
logic instances.

In Section 4.4 we compare with the SOTA solver (from State-Of-The-Art) and with a
few among the best real solvers. The SOTA solver is an ideal solver built by starting in
parallel all the existing real solvers. It conquers an instance if (and as soon as) one of
the real solver does. Thus, in no benchmark the SOTA solver performs worse than any
real solver, as itdominatesall of them. The time taken to solve a set of instances with
the SOTA solver is the sum of the best time on each instance (the calculation may thus
involve more than one real solver per family). In practice, to construct the SOTA perfor-
mance profile we have to limit our attention to a specific set of real solvers, and target
a limited set of benchmarks with all these solvers. Here we refer to the SOTA solver
made up by all the solvers participating in the QBF04 evaluation, as it results from [43].

To directly compare with a few real solvers, we will restrict our attention to four state-
of-the-art solvers, among which we find the three top-rated solvers according to most
of the results presented in [43] (see also Section 5.1). Namely:

QuBE-LRN [33], version 1.3, a search-based solver featuring lazy data structures for
unit clause and pure literal propagation, plus conflict and solution learning.

Quantor [9], version 2004.01.25, a solution-based solver employing q-resolution and
expansion to eliminate quantifiers, plus a number of other features to improve effi-
ciency.

SEMPROP[45], version 24.02.027, a search-based solver featuring directed backtrack-
ing and lemma/model caching.

yQuaffle[78], version 09.30.04, a search-based solver featuring multiple conflict-driven
learning, inversion of quantifiers and solution-based backtracking.

Two more interesting solvers for QBF are ZQSAT [32] and QMRES [57]. They have
been developed quite recently, and apply symbolic techniques to QBF. We plan to di-
rectly compare with these solvers when public releases will be available. In the mean-
while, indirect comparisons can be deduced from the data presented in [57, 32].

4.3 Functional results

Here we briefly address—from an experimental point of view—three aspects:

1. The actual role of the QBF inference rules employed in Step 1.

7 A more recent version does exist, but we have experienced some problems in making it work
on our test platform.
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Instance Variables Clauses Alt. Prefix shape

flipflop-3-c 551 203 2 E[9]A[15]E[140]
cf-2-2x3-w 94,206 1,375 6 E[14]A[2]E[164]A[2]E[164]A[2]E[164]
cf-2-4x8-d 99,432 43,333 32 E[455]A[4]E[818]· · ·E[818]A[4]E[407]
cf-2-9x5-w 745,140 95,180 46 E[67]A[9]E[1357]· · ·E[1357]A[9]E[674]

ripple-carry-10-c 292,399 423,084 2 E[29]A[220]E[289368]
ripple-carry-11-c 414,410 601,952 2 E[32]A[264]E[410918]
ripple-carry-12-c 571,099 832,132 2 E[35]A[312]E[567114]
ripple-carry-13-c 768,478 1,122,585 2 E[38]A[364]E[763968]
ripple-carry-14-c 1,013,0391,482,992 2 E[41]A[420]E[1007972]

Table 1.Some non-trivial instances decided by preliminary QBF reasoning

2. The effectiveness of the tree-reconstruction algorithm (Step 2) on real-world in-
stances.

3. The deductive power of symbolic-only reasoning (Step 4).

Though the main goal of Step 1 is to reduce the formula to an existential-scope-only
normal form, its simplification effects are sometimes surprisingly strong. For example,
several non-trivial formulas (w.r.t. their size) exist in the test benchmarks that are not
beyond the deductive power of the incomplete set of rules adopted. Table 1 shows a few
instances from the QBF library that are completely solved during Step 1. Some sparing
“monster” instances having more than one million variables (such as the biggest ones in
the ripple-carry series) were already noticed to be addressable despite their huge size
[QBF03]. According tosKizzo’s experimental evidences, some families of instances
lay in the class of tractable QBF problems, as the inference engine in Step 1 has poly-
nomial complexity.

As far assKizzo is concerned, the final objective of Step 2 is to reduce thearity of the
skolem functions that are being introduced. When tree reconstruction is not performed,
the prefix we manage is a linearly shaped structure, with a length equal to the number
of variables in the instance (i.e. a tree with one single branch). In the worst case, such
structure stays untouched after tree reconstruction. But in general, we may expect that
the resulting tree is a non-collapsed structure, with more than one branch, and a maximal
depth which is lower than the number of variables in the instance. Consequently, we also
expect that both the average and the maximal universal depth of existential variables
decrease. How relevant are these results over real-world instances?

Table 2 gives a first answer. It compares the depth, average universal depth, and
maximal universal depth computed over the linear prefix (the first three columns),
against the same values computed on the reconstructed syntactic tree. On these in-
stances, the impact of our reconstruction algorithm is clearly strong, and in some cases
even surprisingly strong (see for example the instance-independent shape of thetree
family).
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Before reconstruction After reconstruction
Instance Var Max∀-depth Avg∀-depth Depth Max∀-depth Avg∀-depth

adder-12-sat 2,665 942 804.8 227 80 43.1
adder-12-unsat 2,687 486 277.9 2189 354 242.8
adder-14-sat 3,641 1,281 1,093.5 267 94 50.2

adder-14-unsat 3,667 665 381.1 2,988 483 331.8
adder-16-sat 4,769 1,672 1,426.4 307 108 57.4

adder-16-unsat 4,799 872 500.6 3,911 632 434.6
Adder2-10-c 7,970 445 417.8 670 300 287.8
Adder2-10-s 7,970 545 524.8 98 56 29.5
Adder2-12-c 11,580 642 603.0 957 432 414.5
Adder2-12-s 11,580 786 756.9 116 68 35.3
Adder2-14-c 15,862 875 822.0 1,296 588 564.2
Adder2-14-s 15,862 1,071 1,031.5 134 80 41.2
flipflop-6-c 6864 30 29.9 560 18 17.6
flipflop-7-c 15,213 35 35.0 1,330 21 20.7
flipflop-8-c 30,427 40 40.0 2,824 24 23.8
flipflop-9-c 56,175 45 45.0 5,466 27 26.9
flipflop-10-c 97,272 50 50.0 9,820 30 29.9
flipflop-11-c 159,837 55 55.0 16,610 33 32.9

k-branch-n-20 13822 127 97.9 5568 127 64.3
k-branch-p-19 12544 121 93.2 5063 121 61.3

k-d4-n-16 1438 69 51.7 755 69 35.3
k-d4-p-19 1176 62 45.9 638 62 31.6

k-dum-n-18 885 44 32.2 495 44 22.4
k-dum-p-20 854 41 30.5 469 41 21.4
k-grz-n-18 792 24 17.4 393 24 11.2
k-grz-p-19 767 24 17.7 379 24 11.5
k-lin-n-19 4103 18 11.8 2248 18 8.2
k-lin-p-18 932 12 9.9 430 12 8.4
k-t4p-n-19 2725 123 90.9 1446 122 61.4
k-t4p-p-19 1470 69 50.6 782 68 34.5
k-poly-n-18 1465 110 84.0 926 110 69.1
k-poly-p-17 1384 104 79.4 875 104 65.4
k-path-n-13 937 43 32.1 450 43 22.9
k-path-p-20 1358 61 45.3 645 61 32.0
k-ph-n-21 11131 12 9.7 5347 12 6.5
k-ph-p-20 10444 12 9.7 5067 12 6.4

toilet-a-06-01.11 227 6 3.9 84 6 1.8
toilet-a-06-01.12 247 6 3.9 92 6 1.8
toilet-c-10-05.10 805 4 1.2 498 4 0.5
toilet-c-10-05.12 965 4 1.2 610 4 0.5
toilet-g-15-01.2 80 4 3.2 7 4 1.3
toilet-g-20-01.2 106 5 4.0 8 5 1.7
TOILET7.1.iv.13 400 3 2.2 216 3 1.5
TOILET7.1.iv.14 431 3 2.2 234 3 1.5
TOILET10.1.iv.20 855 4 3.0 457 4 2.0
TOILET16.1.iv.32 2,133 4 3.0 1,117 4 2.0

tree-exa10-10 21 10 10.0 4 2 2.0
tree-exa10-15 31 15 15.0 4 2 2.0
tree-exa10-20 41 20 20.0 4 2 2.0
tree-exa10-25 51 25 25.0 4 2 2.0
tree-exa10-30 61 30 30.0 4 2 2.0

Table 2.The effect of tree-reconstruction over the structure of the syntactic tree
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Fig. 7.The reconstructed tree for the instance “toilet-g-04-01”

An intuitive way to get the feeling of these effects is to take a look at some tree re-
constructed from real-world problems. As we said in Section 4.1,sKizzo is indeed able
to produce a textual representation for such trees that can be later on graphically ren-
dered by suited programs (such usgraphviz). Unfortunately, the trees of all non-trivial
instances are too big to be fully represented while keeping readable fonts for clauses and
variables (sometimes, they are even too big to be rendered at all). However, the smallest
instances fit within our space limitations and retain some interesting features. For ex-
ample, Figure 7 depicts the reconstructed three of the small “toilet-g-04-01” instance.
On the other hand, we can give up the requirement of a complete and readable repre-
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Fig. 8.The compressed, top-most part of the reconstructed tree for the instance “flipflop-5-c”
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sentation, and just get the overall picture, such us in Figure 8, where only the top-most
part of a much bigger tree is compactly represented.

To be fair, we have to say that for other classes of instances the results of our recon-
struction are much less impressive than they appear in Table 2. Further investigations
on this topic will be conducted.

The last point we consider here is the relative importance of symbolic reasoning with
respect to all the other machinery withinsKizzo. Table 3 gives a few results that we
now discuss to get the feeling of what happens within Step 4. A few instance for each
family we are interested in are reported, one instance per row. The first three columns
give the symbolic size of the instance (see Section 3.3.2) before and after Step 4 is
executed for the first time, together with the relative variation occurred as an effect
of such execution. The subsequent three columns report similar information for the
ground size of the instances. The last column gives the relative amount of time spent in
(the first application of) symbolic reasoning. When this percentage is equal to100%,
the instance is completely solved during Step 4, and subsequent steps are not activated
(when the number of remaining clauses is zero, the instance is satisfiable, otherwise it
is unsatisfiable). We use a dash when completion time is not known (it is beyond 1000
seconds). When this percentage is less than100% it measures the cumulative Step 3 +
Step 4 time against the total running time for the instance. An important point is that
Step 4 is possibly executed several times, according to Algorithm 6. However, we are
only measuring the effects of the very first execution against all the rest.

Consistently with Section 3.4.5, we notice that the ground size of instances is always
reduced, whilst the symbolic size of some of them is increased as an effect of symbolic
reasoning. The reduction ratio for the ground size is quite family-dependent, though
not sensibly instance-depending. Most of the simpler families are completely solved by
symbolic reasoning. Conversely, for more complex instances symbolic reasoning does
not suffices, and in certain cases shows a little effect. For some families (such as “mu-
tex”), the shift from symbolically solvable and unsolvable instances happenswithin the
family, moving from the smallest instances to the medium ones. The symbolic/ground
size rate strongly depends on the structure of the instances, as we expect from the dis-
cussion presented in Section 3.3.1. Within the same family—and for families that grows
according to a clearly parametric instance complexity (“adder”,“counter”,“mutex”,...)—
the logaritm of the number of ground clauses grows roughly linearly with the symbolic
size. Quite often, the number of ground clauses before symbolic reasoning is intractable
(state-of-the-art solvers can afford millions clauses, not billions). Some of them stays
unaffordable even after Step 4, but many undergo a strong reduction of the ground size
(see the “adder” family, for example). Several problems exist that—thought not strongly
reduced during the first execution of Step 4—are hardly simplified during subsequent
ones (not shown in the table).

The overall effect of symbolic reasoning is quite incisive. Further experiments will
investigate how the solving effort is divided among the various modules of the solver,
also taking into account the role of the SAT solver, the time spent in BDD reordering,
and the behavior of the divide-et-impera procedure.
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Symbolic clauses Ground clauses
Instance Before After Diff. Before After Diff. Symb. time

Adder2-2-c 234 193 -18% 1.0 · 106 5.4 · 105 -46.0% 100%
Adder2-6-s 3,315 2,236 -33% 1.8 · 1012 1.0 · 106 -99.9% 23%
Adder2-8-s 6,060 4,070 -33% 1.0 · 1016 2.2 · 107 -99.9% 14%
Adder2-10-s 9,625 6,447 -33% 5.3 · 1019 4.6 · 108 -99.9% -
adder-10-sat 3,641 3,580 -2% 9.9 · 1021 1.9 · 108 -99.9% -

BLOCKS3i.5.4 2,640 2,814 +7% 4.0 · 104 3.0 · 104 -25.0% 100%
BLOCKS3ii.5.2 1,886 2,095 +11% 2.9 · 104 2.1 · 104 -28.0% 100%
BLOCKS3iii.5 1,226 1,614 +32% 1.9 · 104 1.3 · 104 -32.0% 100%
BLOCKS4i.6.4 10,710 12,355 +15% 1.3 · 106 1.0 · 106 -23.0% 1%
CHAIN12v.13 486 0 -100% 1.8 · 106 0 -100.0% 100%
CHAIN17v.18 861 0 -100% 1.1 · 108 0 -100.0% 100%
CHAIN23v.24 1,443 0 -100% 1.2 · 1010 0 -100.0% 100%

cnt04 321 0 -100% 1.7 · 103 0 -100.0% 100%
cnt04re 397 300 -24% 2.1 · 103 3.2 · 102 -85.0% 25%
cnt08 1,237 0 -100% 6.1 · 104 0 -100.0% 100%

cnt08re 1,309 1,240 -5% 6.5 · 104 1.1 · 104 -83.0% <1%
cnt12 2,505 0 -100% 1.3 · 106 0 -100.0% 100%

cnt12re 2,733 2,820 +3% 1.5 · 106 2.6 · 105 -83.0% <1%
flipflop-9-c 74,066 71,691 -3% 9.4 · 1012 9.2 · 1012 -2.0% 100%
flipflop-10-c 128,245 124,844 -3% 1.3 · 1014 1.3 · 1014 -1.0% 100%
flipflop-11-c 210,674 205,995 -2% 1.7 · 1015 1.7 · 1015 -1.0% 100%

impl04 32 0 -100% 1.4 · 102 0 -100% 100%
impl12 96 0 -100% 3.7 · 104 0 -100% 100%
impl20 160 0 -100% 9.4 · 106 0 -100% 100%

k-branch-n-9 12,923 20,608 +59% 2.1 · 1018 1.6 · 1018 -23.8% 3%
k-branch-p-13 28,676 78,006 +172% 3.7 · 1024 2.9 · 1024 -21.6% 100%

k-d4-n-16 5,133 5,535 +8% 4.2 · 1022 2.4 · 1022 -42.9% 2%
k-d4-p-16 2,959 5,044 +70% 4.7 · 1017 3.1 · 1017 -34.0% 100%
mutex-4-s 362 0 -100% 1.9 · 107 0 -100% 100%
mutex-8-s 834 367 -56% 2.9 · 1012 3.5 · 104 -99.9% 70%
mutex-16-s 1,778 947 -47% 2.6 · 1022 2.4 · 109 -99.9% -

TOILET10.1.iv.20 3,466 3,326 -4% 2.1 · 104 7.4 · 103 -64.8% 55%
TOILET16.1.iv.32 10,495 8,175 -22% 5.6 · 104 8.6 · 103 -84.6% 72%
toilet-a-08-01.11 3,109 1,069 -66% 6.0 · 104 2.7 · 104 -55.0% 3%
toilet-c-10-01.14 1,974 1,874 -5% 7.5 · 103 4.0 · 103 -46.6% 1%
toilet-g-20-01.2 460 0 -100% 1.1 · 103 0 -100.0% 100%

tree-exa2-40 51 1 -100% 5.6 · 1014 1 -100% 100%
tree-exa10-30 58 0 -100% 58 0 -100% 100%

Table 3.The effect of symbolic reasoning over the size of instances, measured as the number of
ground clauses and symbolic clauses before and after Step 4 is executed.

4.4 Performance

As a preliminary performance evaluation, we target some non-random benchmarks
from the QBFLIB, and compare both with the SOTA solver (see Section 4.2) and with
a few among the best real solvers. In the former case, we address a subset of the test
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Test set SOTA’04 sKizzo
From family instancesSolved Time (sec.) Solved Time (sec.)

adder 8 6 (132.54) 2 (20.18)
blocks 8 8 215.02 7 70.28
chain 8 8 9.25 8 0.45

counter 8 4 (0.05) 6 (1232.29)
flipflop 8 8 3.16 8 81.67
impl 8 8 0.06 8 127.75

jmc-quant 16 6 30.13 6 196.61
k-branch 16 7 (274.93) 9 (994.84)

mutex 7 7 (7.30) 3 (2.31)
szymanski 8 8 (211.20) 2 (1.75)

toilet 8 8 7.75 8 1.23
tree 8 8 4.82 8 0.18

vonN 8 8 16.40 8 16.91

Table 4.Comparison betweensKizzo and the SAT’04 SOTA solver

cases employed in [43], in the latter case we target the families described in Section 4.2
(a wider experimentation can be found at [4]).

Table 4 gives the result of our comparison, and is to be interpreted as follows. Each
row comparessKizzo with the SOTA solver on a specific test-set. Thirteen test-sets
have been considered. Each one is a subset of a family of instances, randomly extracted
from that family. The first two columns give the name of the originating family, and
the number of instances extracted to build the test-set. To perform a fair comparison,
we used the same instances extracted during the QBF evaluation. The values in the
third and fourth columns have been reported from [43]. They represent the number of
instances solved by the SOTA solver, and the cumulative time taken to solve them. The
last two columns give analogous results forsKizzo8. Solving times are parenthesized
when they are not directly comparable (as the two solvers didn’t solve the same number
of instances).

Results are quite encouraging. The SOTA solver solves more instances per family
thansKizzo in only 4 out of 13 cases. Interestingly, the converse also happens: in 2
cases our algorithm solved more instances than the SOTA solver. In the remaining 7
test-cases, the number of instances solved is the same, so we compare running times.
In 4 out of these 7 cases,sKizzo is faster (up to an order of magnitude) than the SOTA.
Conversely, in most of the remaining cases the SOTA solver outperforms our procedure
by an order of magnitude (with the noticeable exception of the “Impl” family, where
the SOTA’s advantage is several orders of magnitude wide).

8 The machines used for experimenting with the two solvers have the same operating systems,
type of processor and amount of pshysical memory, but also have a minor difference. Indeed,
sKizzo has been run on a 2.6Ghz processor, while the SOTA solver has been tested on a
3.2GHz processor. Running times in Table 4 are not normalized, so we would expect a slightly
better performance ofsKizzo should it be tested on the very same machine as the SOTA.
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Fig. 9.Comparison over the “rintanen” group of families

Though very preliminary, this experimentation suggests that difficult instances lay
in different places for the two solvers. This confirms that the reasoning engine ofsKizzo
really diparts from those used in other solvers. The test-cases in whichsKizzo is dra-
matically outperformed indirectly point out how it needs to be improved. In this respect,
a minor exception is the “adder” family, that we thoroughly re-consider later in this sec-
tion with surprising results. Conclusively, the comparison with the SOTA solver on the
test-cases we considered is fairly good, especially if we take into account that the ver-
sion ofsKizzo we employed is a first, unadjusted implementation of a completely new
algorithm.

To directly compare with real solvers, we restrict our attention to the solvers described
in Section 4.2. The representation style we adopt for our experimental results is taken
from [34, 57, 74], where the number of solved instances is plotted against the (non-
cumulative) time taken to solve those instances. So, the y-value of a point in the plot
gives the number of runs that didn’t time-out, each one being timed out after an amount
of time represented by the x-value of the same point.
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Fig. 10.Comparison over the “ayari” group of families

Figure 9 concerns Rintanen’s benchmarks.sKizzo and Quantor were the only two
solvers to complete the task (apart from one instance that no solver has been able to
decide) within the alloted 1000-second timeout. The performance ofsKizzo is aligned
to that of Quantor—by far the best solver on this group of families. Both solvers sensi-
bly dominates the rest of the competitors. Quantor finishes its task requiring less time
than our algorithm. Interestingly, the instance that contributes the more to this differ-
ence with a surprisingly high solving time (almost one hundred seconds onimpl20) is
one that all the other solvers find to be absolutely trivial. The reason for the poor per-
formance ofsKizzo over theimpl family has been analyzed, and it comes out to be an
idiosyncrasy that can be easily worked-around (it will in future releases).

The results on the Ayari’s benchmarks are reported in Figure 10. This benchmark is
much more difficult than the previous one. Indeed, no solver has been able to solve
even half the instances in the group, except forsKizzo which exactly matches this re-
sult by solving 36 instances out of72, immediately followed by Quantor with35 solved
instances. The performance ofsKizzo is quite satisfactory on this benchmark, espe-
cially if we take into account that some of the instances we didn’t solve are easy for
other solvers. This give important hints on how to address them more efficiently in fu-
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Fig. 11.Comparison over all the satisfiable “adder” instances

ture releases.

The good performance obtained in the Ayari benchmarks led us to reconsider some of
the results presented in the comparison with the SOTA solver (Table 4). How is it possi-
ble for sKizzo to perform quite well in the whole benchmark while being dramatically
outperformed in some of the Ayari families in Table 4?

A first simple answer is that many more solvers than the four we consider here
may have contributed to the performance of the SOTA solver. Even if those solvers
didn’t show an outstanding overall performance in isolation, they might have been able
to (very) efficiently solve at least some instances, thus contributing to the remarkable
SOTA performance. A second intriguing answer concerns the role of the random sam-
pling over families of instances. In particular, we are interested in the statistical signifi-
cance of the subset extracted.

To shed a few light over this question, we considered in more detail the “adder” test-
set used in Table 4, which is inherited from the QBF04 solver evaluation. At a closer
look, it results that most instances in that test set areunsatisfiable, even if in the original
family 50% of the instances are SAT. Moreover, one of the two SAT instances chosen
for the test-set is very complex and no solver has been able to conquer it (norsKizzo
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Fig. 12.Comparison over all the “counter” instances

did). If we now consider that—empirically—sKizzo finds satisfiable “adder” instances
easier to solve than equal-sized unsatisfiable ones, we have a good explanation for the
phenomenon.

Figure 11 compares9 five solvers on the whole satisfiable subset of the “adder” fam-
ily10. Results are coherent with our analysis.

To conclude this preliminary experimentation, we target the “counters” family of in-
stances. We introduced this family and motivated its relevance in Section 4.2. From our
experimentation, and according to what Biere already noticed in [9], it comes out that
QBF-based model checkingdoesn’toutperform plain SAT-based model checking, at
least on the “counter” instances. Within 1 minute, BMC is able to decide 7-bit-counters
(with both reset and enabled signals modeled), while the QBF solverdecidecan handle
3-bit-counters,qubeandsempropup to 4 bits, and onlyquantormatches the 7 bits re-
sult. sKizzo is just slightly better than the state of the art, with 8-bit solved within60

9 All the solvers have been run on the same 2.6GHz, 1GB machine, with a 1000s. timeout.
10 These instances are by no meanseasy. The five more complex instances resolved bysKizzo

in Figure 11 are 2003-hard (no solver was able to solve them in the QBF03 evaluation). Three
of them have been conquered later on by Quantor.
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seconds. However, it is also able to solve the all16-element family of counters (with
no enable and no reset signal) in less than5 minutes, and its relative performance gets
more interesting as higher running times are considered. Figure 12 compares our algo-
rithm against four state-of-the art solvers, including quantor, which is the best solver on
this specific family.

5 Related and future work

5.1 Related work

Most work on QBF algorithms aims at extending the successful solving techniques
used in propositional satisfiability to the case of quantified boolean formulas. So, let us
briefly recall those techniques at first.

Successful SAT solvers are refined versions of asearch algorithmthat looks for
models in the space ofpartial truth assignments. They all build on top of the sem-
inal work [24, 25] by Davis, Putnam, Logemann, and Loveland, where a depth-first,
recursive visit of the semantic evaluation tree of the formula [62, 41] is described. This
algorithm, often referred to as DPLL procedure, has been improved in several ways
over the decades (see [22, 36, 29, 67, 77, 3, 35, 48, 52, 8] for specific examples and [5]
for a detailed survey). Many enhancements—such us conflict analysis, failure-driven
assertion, non-chronological backtracking, and learning—arelookbacktechniques (in-
formation is gathered form past search and then conveniently reused). Others - such us
forward checking, forward reasoning and heuristics choices—are lookahead techniques
(information concerning the remaining search space is exploited by ad-hoc exploring
mechanisms to help the main search procedure doing its work efficiently).

The unquestionable result of all these improvements is that SAT solvers are now
regarded as effective tools for solving industrial-scale problems [21], and have been
successfully applied to several domains, such us computer-aided design of integrated
circuits [39, 42], Planning [38], Model Checking for dynamic systems [10], Schedul-
ing [23], Operations Research, and Cryptography [50], just to name a few.

The QBF language is more expressive than PROP, but it is also more complex to de-
cide [73] (PSPACE instead of NP). Problems arising from Temporal Reasoning [70],
Planning [59], Formal Verification [65, 1], Reasoning about Knowledge [55], and two-
player games [31] find a more natural (and possibly exponentially more succinct) rep-
resentation in QBF than in PROP. Hence, the question arises on whether QBF solvers
can inherit and perhaps overcome the popularity (and efficiency) of SAT-based meth-
ods for such applications. The answer mainly depends on the effectiveness of the tools
developed for deciding QBF formulas. Such tools should prove on the field that a way
exists to leverage the augmented expressive power of QBF without suffering too much
of the worstened worst-case complexity.

Currently, most QBF solvers leverage revised versions of techniques that have been
originally introduced for the SAT framework. These techniques range from the ex-
tension of resolution-based reasoning [40] to the employment of lookback enhance-
ments [46], encountering along the way a key contribution by Cadoli, Giovanardi and
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Schaerf [16] in which the original extension of DPLL to QBFs is presented. Up to a
certain point, the extension of SAT techniques to QBF solvers has been successful.
In the QBF solver evaluation reported in [44], all the competitive QBF solvers (such us
QSAT [60], QSOLVE [27], QUAFFLE [78], QuBE [33], SEMPROP [45]) were search-
based.

Yet, the important question we raised in the introduction remains unanswered. Namely:
can QBF-based reasoning really beat SAT-based reasoning?

Some results [65, 1, 55, 9, 57, 43, 44] suggest that the shift to QBF does not pay off
yet. In one such contribution [9], for example, the way unbounded model checking is
performed via SAT is compared to the way it could be done via QBF. The results of
this preliminary evaluation confirms that current QBF-based model checking may at
most match the results obtained by plain BMC. Moreover, as the examples analyzed
in [9] are very easy for classical BDD-based model checking, some kind of remarkable
improvement may be reasonably expected from alternative QBF solver architectures.

A few alternative solving algorithms for QBF are indeed emerging [43]. Some of
them reverse the order in which quantifiers are considered [9] (bottom-up instead of
top-down), others [57, 32] employ some kind of compact representation for the prob-
lem (usually, OBDD or ZBDD based symbolic representations). Many of them restate
the very goal of the solver: it is no longer a matter ofsearching for a solution, rather an
attempt to directlysolve the instance.

Interestingly, the distinction betweensearchingandsolving is quite old, and—in the
framework of algorithms for existential propositional reasoning (SAT)—traces back to
the two early contributions [24, 25]. Recently, it has been reconsidered from different
perspectives [61, 56, 5]. Well known resolution-based solving techniques (see [13] for
a survey) have received renewed attention, especially when used in conjunction with
compressed representation for clauses [17, 28, 53]. When compared to search-based
algorithms for SAT, these so-calledsymbolicapproaches show a certain strength on
specific classes of instances, but seem to be not competitive in general [56].

Things change in the QBF scenario. Both the idea ofcompressed/symbolicrepre-
sentations, and the shift fromsearchingto solvingseem to be promising [57, 9, 32] as
far as QBF is concerned. Possible reasons for this asymmetry discussed in the litera-
ture are (1) that symbolic representations manage existential and universal quantifiers
in a symmetric way11, whereas search-based procedures have a hard way with the latter
ones, and (2) that QBF problems are more structured and lesscombinatorialin nature
than their propositional counterparts.

11 This is true for the symbolic representations employed so far in the literature. WithinsKizzo,
the technique used to get rid of universal variables strongly differs from the way existential
quantifiers are dealt with. AssKizzo is a quite competitive solver, the prominence of “sym-
metric hypothesis” is weakened.
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Let us now take a closer look at some of these new algorithms for QBF satisfiability,
starting with the really noticeable case of Quantor [9]. It is a “young” and simple12

algorithm that after one year of improvements13 has over-performed (on non-random
benchmarks) all the well-known search-based algorithms [43]. It does not use com-
pressed representation, and adopt asolvingparadigm. The emphasis is on eliminating
quantifiers from the innermost to the outermost, using q-resolution [40] for existential
quantifiers and expansion for universal ones. A lot of other details (equivalence rea-
soning, subsumption control, estimation of expansion and resolution costs, scheduling
heuristics) contribute to the impressive overall performance of this algorithm.

ZQSAT is an algorithm that uses thesearchingparadigm, but employs a compressed
representation for clauses based upon ZDDs, in the spirit of [17]. It is able to efficiently
solve classes of instances that are known to be hard for non-symbolic DPLL-based
QBF solvers, and is also able to process QBF formulas in NNF (negated normal forms),
which can bring in some cases an exponential benefit (provided suited input formulas
are available). QMRES [57] is another algorithm that exploits ZDDs to symbolically
represent clauses. Rather than performing a DPLL-like search, this algorithm adopts
multi-resolution [17] tosolvethe instance. This yields a quite competitive solver that
has been able to tackle previously unsolved instances during the last QBF solver evalu-
ation [43], resulting particularly efficient over high-alternation, structured instances. In
the same paper [57], a BDD-based solver—called QBDD—is also introduced, which
employ a symbolic quantifier elimination technique and uses BDDs to encode satisfy-
ing assignments. Though both algorithms appear to be more scalable than search-based
ones, QBDD is in general dominated by QMRES.

To conclude, we give a few pointers to contributions that report about the tools and
techniques used bysKizzo. Structure exploitationis a somewhat elusive concept. On
the one hand, the structure of an instance is alwaysimplicitly dealt with (just think of
the way search-based algorithms visit their prefix, or heuristics compute their prefer-
ences). On the other hand, anexplicit exploitation of the QBF structure is rarely if ever
attempted in other approaches. Noticeable exceptions are (1) the QBDD and QMRES
algorithms presented in [57] that exploit theGaifman graphof the matrix to decide a
good variable ordering for the ordered DD used to perform quantifier elimination, (2)
the work presented in [26] to pre-process QBF prefixes and obtain semantically equiv-
alent alternatives with an “optimal” number of quantifier inversions, (3) the generaliza-
tion from CNF to NNF of the normal form used as input language for QBF formulas,
presented in [32], and (4) the notes on tree-like prefixes reported in [9].

The foundational work of Skolem [71], together with the related works of Herbrand
and L̈owenheim (see [15] for an overview of these works), are at the very basis of au-

12 As usual, even if the abstract description of an algorithm is “simple”, implementation details
may be absolutely non-trivial. Practical experience with SAT and QBF solvers suggests that
not only implementation is important, but it can be the main responsible for the performance
edges. For example, most of the reasons for Chaff efficiency are hidden in the code, not in its
abstract description.

13 A preliminary version of Quantor did already participate in the SAT’03 evaluation with limited
success.
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tomated deduction for expressive logics, and have had the widest possible application.
We here just cite a recent work by Jackson [37] that employ a notion of skolemization
similar to ours.

Forms of reasoning about binary sub-formulas are widely known, and regarded as
an effective pre-processing step in the propositional framework [11, 30, 8]. Our main
source of inspiration for the binary hyper reasoning techniques presented in Section 3.4.3
and 3.4.4 is [2], while the algorithm we use for detecting strongly connected compo-
nents is due to Kosaraju (unpublished) and Sharir [66] and dates back to 1978.

The interest in binary decision diagrams as a tool for manipulating boolean func-
tions traces back to the seminal work by Bryant [12], and is nowadays so wide that en-
tire monographs on the topic exist (see [76] for a comprehensive account on the field).
Their usage in SAT/QBF satisfiability algorithms have been explored at least in [75, 51,
17, 63, 54, 53, 28, 56, 57, 32]. The CUDD package we have used [72] is one of the most
widely known, thought many alternatives do exist (seewww.bdd-portal.org for
further details).

5.2 Discussion

We discuss the differences and similarities between our technique and the other ap-
proaches to QBF satisfiability reported in Section 5.1.

5.2.1 Solving vs. search.We cited in Section 5.1 some empirical results suggesting a
tradeoff between what can be done efficiently bysolving, and what you’d better perform
via search, both in the propositional case and in the QBF framework. Some classes of
formulas have been recognized to clearly fall into one of these two classes. At the same
time, solvers are partitioned between search-based ones (QuBE, SEMPROP, QZSAT,
QSOLVE, etc.) and solving-based ones (Quantor, QMRES, QBDD).

sKizzo behaves differently. It tries to obtain the best of both worlds: first, sim-
plify (or decide, if you can) the instance via state-of-the-art symbolic reasoning tools
(CUDD); then, face the remaining combinatorial core by means of state-of-the-art,
search-based solvers (zCHAFF). The employment of a refutationally incomplete set
of rules in Step 4 is not necessarily a drawback for the algorithm. A positive side-effect
of this limitation is that those inferences that are easy and effective for the symbolic
machinery are left to Step 4. When Step 4 reaches the limits of its deductive power, it
is likely to have extracted acore of the instance which is morecombinatorialin na-
ture. Search techniques have proved to be more effective on such instances, and Step 6
indeed address them by means of search-based methods.

These complementary searching and solving behaviors are deeplyinterconnected
within sKizzo: Step 1 applies a non-symbolic, solution-oriented, pre-processing rea-
soning toolset. Step 4 implements a fully symbolic, refutationally incomplete inference
procedure. Step 6 applies a non-symbolic, ground, search-based, complete decision
method. Finally, Step 5 is itself a search procedure that moves from one node to the
other of its search space through symbolic steps, and then resorts to a ground, search-
based approach (Step 6) whenever possible.
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5.2.2 The symbolic approach.We have reported about several symbolic/compressed
representations for CNF formulas and/or propositional models. Very few of them con-
cern QBFs. Namely, the search-based solver ZQSAT, and the solving procedures QM-
RES and QBDD.

The representation employed withinsKizzo differs from all of them. Step 3 indeed
exploits the special structure of the propositionally skolemized QBF clauses, i.e. the
fact that clauses in the propositionally skolemized version of a QBF instance are not
randomly scattered. Rather, they are grouped into “clusters”, one for each originating
QBF clause. Consequently, our symbolic representation for clauses is not just a deci-
sion diagram that represent sets of clauses (or sets of assignments), but a much more
articulated data structure. It involves different representation levels for existential and
universal variables, and needs to refer to the syntactic tree of the formula to fully ex-
pand its ground meaning. As a minor note, we observe that our algorithm is currently
the only competitive BDD-based QBF solver, as all the others build on top of a ZBDD-
based representation. As opposite to other symbolic approaches, we also notice that our
representation doesn’t prevent from easily detecting both pure literals and unit clauses.

5.2.3 Structure exploitation. Few solvers attempt to directly leverage the structure
of instances. By contrast,sKizzo confers to the wordstructurea central, many-sided
role: (1) the solver architecture is articulated in several steps and this allows for investi-
gations on how to classify formulas w.r.t. the stage they are solved in14, (2) the recovery
of somehidden syntactic structurefor the formula is the main concern of Step 2, (3)
the data structure used in Steps 4 are themselves organized according to the prefix of
the formula, and (4) the syntactic tree of the formula is used to guide the search during
Step 5.

While all of these topics deserve further attention (and an in-depth comparison with
the techniques presented in [57, 26, 32]), we here limit our attention to the structure re-
covery performed during Step 2. A fascinating consequence of Step 2 is that we loose
the simple notion ofdirection for the prefix (innermost→ outermost or outermost→
innermost), because quantifier alternations no longer show a linear shape. Though in
linearly represented prefixes there is only a partial ordering among quantifiers (as vari-
ables in the same scope are not ordered) the sequence of scopes is still totally ordered.
This total order identifies the two possible directions over the prefix used by most algo-
rithms. When a tree-shaped syntactic structure is used, the set of scopes is only partially
ordered, and no monodimensional notion of direction applies. Even more radically, the
notion of “order among quantifiers” (which is inescapable in all the other solvers) is
simply absent in the reasoning techniques we adopt in Steps 3-4. They indeed abstracts
over the presence of multiple, partially ordered quantifiers, as the only place in which
quantifier alternations do matter is in the symbolically represented (and atomically ma-

14 A more general issue exists about constructing solvers that behave efficiently on QBF formulas
known to belong to restricted sub-classes, “simpler” than general QBFs. See [14].
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nipulated) sets of ground clauses15. The partial order among scopes re-gain part of its
importance during Step 5.

5.2.4 Divide-et-impera.The decision procedure operated in Step 5 closely resembles
the one used in DPLL-like solvers forQBF . However, what we are managing is not
a QBF formula, but a (symbolically-represented) tree-shaped propositional formula.
As far as splitting over existential variables is concerned, this makes the whole proce-
dure more similar to SAT solvers than toQBF decision procedures. By contrast, when
the split is performed overuniversalvariables, something conceptually different hap-
pens: the instance is partitioned into two completely disjoint sub-formulas, according
to expression (11). The splitting operation is performed symbolically, both on universal
variables and on existential variables, according to expressions (10) and (11). This is
reminiscent of other symbolic approaches to QBF described in Section 5.1.

Unlike most other search-based solvers, the base-case of the procedure is never a
direct decision over trivial sub-formulas; well in advance, either symbolic normalization
or compilation-to-SAT decide every sub-problem. These techniques may thus be seen
as powerful look-ahead tools.

Finally, internal nodes of the quantifier tree generating more than one child induce
sets ofindependentsubproblems. The whole procedure is named “divide-et-impera”
after this feature, which is absent in standard DPLL procedures. Step 2 gives a funda-
mental contribution towards partitioning subproblems. Should indeed Step 5 work on a
linear prefix, it would never be able to disjoin sub-instances.

5.2.5 Memory consumption. In our experimental evaluations, Quantor often timed-
out because of memory problems. It is in the very nature of that algorithm to be memory
eager: it indeed uses an explicit representation for intermediate formulas derived via
q-resolution and expansion. Unfortunately, for large instances, such intermediate rep-
resentations get so large than the process starts allocating more memory than is physi-
cally available16. As a consequence, performance falls down. By contrast, search-based
solvers usually employ only a fraction of the physical memory, and their time-outs are
actualtime-outs.

sKizzo lays somewhere in the middle: Like quantor, it heavily employs all the avail-
able physical memory, and could proportionally benefit from larger physical memories
(its performances are expected to scale with memory, an already noticed feature of sym-
bolic procedures [57]). Like DPLL solvers, it never causes the virtual memory system
to start managing secondary memory. Obviously, every process can keep on monitoring

15 At the implementation level, a notion of order among variables may still exist—for example if
one employs ordered decision diagrams—though this is a hidden kind of order with absolutely
no effect (other than, possibly, performance) on the underlying reasoning procedure.

16 The large size of such intermediate results strongly resembles what happens with BDD-based
computations. Not by chance, the strong memory requirements ofsKizzo also originate form
the BDD-based representation of the intermediate clause sets managed during symbolic rea-
soning. These intermediate sets can indeed be interpreted as the symbolic, all-at-once counter-
part to the step-by-step, ground approach used by Quantor. See Section 3.4.5.
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its own memory consumption and just stop working when it is getting too large. How-
ever,sKizzo is able to achieve this result without being forced to give up the solving
process. It will just take more time.

5.3 Future work

Our future work onsKizzo mainly aims at improving the algorithm and the imple-
mentation, both of which show a lot of room for improvements. We now briefly point
out where such space lays, distinguishing among (1) some implementation-related im-
provements, (2) the introduction of already known techniques not yet exploited within
our solver, (3) the addition of new features, and (4) some applicative perspectives.

5.3.1 Implementation. sKizzo v0.1 is a first implementation of a completely new
algorithm. As such, it lacks a lot of optimizations and a careful implementation-level
engineering. Actual bottelnecks in the whole process are still to be discovered and pos-
sibly removed. Some aspects ofsKizzo v0.1 ’s internals suffer from the underlying the-
ory being developed at the same time of the implementation17. With few exceptions,
simple-minded data structures are used. Many of them should be redesigned to pursue
efficiency. For example, techniques to perform fast binary constraint propagation are
very effective in the purely propositional framework. They could be easily lifted to our
case.

There are several parameters to tune in the two linked libraries. Nothing has yet
been attempted in this respect. The decision-diagram package, for example, needs an
initial variable order (known to possibly have a dramatic impact on the overall perfor-
mance), the choice of an algorithm for dynamic reordering18, the control of the size of
computed tables and allocated memory, and so on. Relevant effects on the overall per-
formance may be expected, since a large fraction of the whole running time on complex
instances is spent on either BDD-related operations or variable reordering. Moreover,
all the competitive DD-based QBF solvers reported so far employ ZDDs rather than
BDDs. sKizzo encapsulate the interface towards DDs in a dedicated package, so that
the replacement of one package with another is relatively easy.

In addition to this, there are alternative (and quite different) versions of such li-
braries that worth the case to be considered. For example, a lot of other efficient SAT
solvers (BerkMin, siege, Jerusat, ...) could be plugged into the modular architecture of
sKizzo (where a module exists to abstract over the specific solver employed). Deci-

17 The first implementation core ofsKizzo was written six months ago, when very few ideas of
those reported in Section 3 and Section 4.1 were already clearly stated.

18 Preliminary experimentations show—as expected—a complex tradeoff between the time spent
by sKizzo performing variable reordering and the efficiency of the operations on the resulting
representation, also depending on the reordering algorithm employed.
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sion diagram packages other than the CUDD should also be tested19 (see the web page
www.bdd-portal.org for a comprehensive list of possibilities).

Beyond the effective setup of libraries’ parameters, a general tuning activity is also
necessary for the solver itself. For example, the strategies to control resource consump-
tion presented in Section 4.1 are powerful tools that still deserve attention to reach their
potential.

5.3.2 Exploiting known techniques.At present,sKizzo employs almost none of the
enhancements that most other solvers heavily exploit. For example:

– No heuristicsis employed, even though there are a lot of heuristics decisions to
be taken. Heuristics may greatly help our solver in reaching earlier conclusions.
The place currently missing heuristics the most is Step 5 (divide-et-impera). The
problem of choosing the next variable to branch on (and possibly the truth value
to be firstly assigned to that variable) is a sensible problem for DPLL-like algo-
rithms. A tradeoff exists between the complexity of deciding which literal is to be
selected and the pruning ability of the resulting choice w.r.t. the size of the search
tree actually explored. At one extreme, one could randomly choose the next vari-
able, thus consuming no time in the selection decision. At the other extreme, one
could solve the problem of finding the variable ordering and truth value assignment
which minimize the number of nodes subsequently explored by the search proce-
dure. However, this problem is even harder [49] than the SAT problem itself, so
one resorts to approximate decisions. Comprehensive studies of the effect of differ-
ent heuristics on the performance of purely existential solvers can be found in [69,
34]. Well known examples of heuristics are theMaximum Occurrences Minimal
Size(MOMS) [29, 58, 22], the combined rule presented in [77], theUnit Propaga-
tion Lookahead(UPL) [47, 8], and theVariable State Independent Decaying Sum
(VSIDS) [52]. Adaptations of such heuristics to the quantified case have to deal
with the partial order among variables induced by the prefix. Most search-based
QBF solvers leverage adapted SAT heuristics (see [43]).

– No form of learningis employed, other than the one possibly performed by the SAT
solver as a black box. However, at least four kinds of learning may be introduced:
(a) learning of failures/successes of the divide-et-impera procedure, resulting in
the insertion of new symbolic clauses; (b) learning of the optimal instance size to
switch from the symbolic reasoning to the search-based behaviour; (c) learning of
the optimal tradeoff between splitting the instance at hand into more pieces and
giving it as a whole to the SAT solver; as the absolute ground size of an instance
gives no clear indication on its hardness, the divide-et-impera procedure should
learn from past SAT instances generated for the same QBF instance; a preliminary

19 While the overall performance of different DD packages is usually comparable, significant
discrepancies may emerge when only a small subset of the operations over BDDs is of interest
(this is the case forsKizzo). In such cases, design choices such as the employment of a pointer-
based vs. an index-based representation, or the constant-time negation via pointers labeling
could make a strong difference.

54



version of this mechanism is already implemented insKizzo v0.1 ; we are also
studying a method based upon the structural analysis of the matrix; (d) the clauses
learned by the SAT solver during one run may be helpful in subsequent runs over
the same QBF instances, provided the whole generate-and-solve procedure is made
incremental. We are working on this improvement (see also Section 5.3.3).

– A major disadvantage of the divide-et-impera procedure presented in Section 3.5 is
that it implicitly relies on chronological backtracking, that is: truth values for vari-
ables are assigned/unassigned following alast-in, first-out policy. So, whichever
the reason the algorithm has to backtrack, it can only backtrack on the (chronologi-
cally) last assignment.Conflict-directed backjumping(sometimes called intelligent
backtracking) is used in DPLL-like solvers to overcome such limitation. It has been
originally introduced for the SAT case [68, 3], and then extended to QBF. When a
contradiction is detected, the backjumping engine computes the strictly necessary
subset of the current partial assignment which is responsible for the contradiction to
arise. The value of the most recently assigned variable appearing in the contradic-
tion has to be changed (alternative schemes from CSP feature hypotheses’ reorder-
ing). In the QBF case, additional complications have to be dealt with, as working
hypotheses may be either universally or existentially quantified, thus playing quite
different roles in backjumping. However, Step 5 deals with a purely existential sce-
nario. In general, a contradiction is detected in Step 6 by the SAT solver, and then
forwarded to Step 5, where it becomes necessary to infer which symbolic assign-
ments are responsible for that ground contradiction to arise. We are working on one
such scheme, which—as in the usual propositional case—can also be extended to
learnsymbolic clauses that will further reduce redundancy.

– Trivial truth and trivial falsity checks are not performed. These techniques have
been proved to be quite effective since early contributions on QBF [16]. As far
assKizzo is concerned, the check for trivial truth amounts to remove all the uni-
versal nodes from the quantifier tree, perform a complete for-all reduction, and
then test for satisfiability the resulting existential instance. Should it come out to
be satisfiable, the original QBF would be guaranteed to be satisfiable as well (the
Skolem functions do not actually depend on their arguments: they areconstant).
Conversely, trivial falsity would follow from the unsatisfiablity of the subset of
clauses only made up by existential literals.

– Subsumption controlis not performed. As soon as a new clause is produced by
some inference step, abackward subsumptioncontrol can be performed. It amounts
to remove all the (already present) clauses that are subsumed by the just added
clause. The converse operation, i.e.:forward subsumptioncontrol, amounts to avoid
adding a clause if it is subsumed by some already present clause. The benefits of
these methods have to be carefully weighted against the time they consume. Any-
way, they are much more relevant to solution-based methods than to search-based
solvers.sKizzo might exploit one such method at three levels: in the original QBF
framework, in the intermediate symbolic representation, and in the final ground
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reasoning. The second one is by far the more attractive, also considering that many
of the inference rules presented in Section 3.4 produce redundant clauses.

5.3.3 New features.One obvious way of strengthening our approach is to augment
the inference power of Step 1 and/or Step 4 by adding new inference rules. There are
a lot of interesting candidates, though none of them have been extensively tested yet
(beyond the seven rules already employed). As an example, some limited form of q-
resolution could be implemented during Step 1 to remove certain existentially quantified
variables, a la Quantor20.

The SAT instances handled in Step 6 are not unrelated to one another. We are work-
ing on a very natural way of producing an incremental encoding and anincremental
resolutionfor such instances. It would allow to exploit the incremental solving capabil-
ity of state-of-the-art propositional solver, like zChaff.

Another interesting challenge for QBF solvers is to produce and manage compact
certificates for their SAT/UNSAT answers w.r.t. a specific instance. The simplest forms
of certificates are: for a SAT answer, a model of the QBF instance; for an UNSAT an-
swer, a somewhat solver-dependent representation of a (minimal) sequence of inference
steps deriving the empty clause from a (minimally) unsatisfiable subset of the input for-
mula. Once the representation for certificates is decided, a piece of software can be
written (independently of any particular solver) to verify their validity. In this respect,
sKizzo has the advantage that it compactly represents its potential certificates in a na-
tive way. We are working on the model verifier “ozziKs” that takes such a certificate as
input and verify its validity.

5.3.4 Applications. On the applicative side, it would be interesting toconnectour
solver to a real-world model checker. In particular, we have some experience [7, 6] in
modifying/extending the module of NuSMV21 devoted to instance generation for SAT-
based model checking.

Following the guidelines reported in [64, 73, 60], it would be possible to extend
the purely propositional generation mechanism employed in the BMC module to pro-
duce quantified boolean formulas22. Thereafter, the whole collection of SMV modules

20 Quantor employs q-resolution as a core inference rule to decide the instance, together with
universal quantifier expansions. Conversely, q-resolution should be just a pre-processing step
for sKizzo with no commitment to its usage when the enlargement of the formula is not
worth its cost. For example, its application could be limited to remove those variables—if
any—that do not increase the size of the formula, or to eliminate those variables that imply
a significant reduction in the projected ground size of the instance. This happens whenever
in both resolvents the two deepest existential literals have some universal quantifications in
between them along the quantifier tree, and resolution is performed over the deepest variable.

21 NuSMV [19, 20, 18] is a state-of-the-art symbolic model checker that integrates BDD-based
and SAT-based model checking techniques on the whole input language. It has been used for
the verification of industrial designs, as a core for custom verification tools, and as a testbed
for formal verification techniques.

22 On the practical side, the embedding ofsKizzo into NuSMV would be quite natural as this
model checker already integrates the CUDD package (for unbounded symbolic model check-
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available for NuSMV and related model checkers would be automatically translated
into QBF instances. Moreover, we would have a roboust, industry-standard platform to
extensively compare SAT solvers and QBF solvers on model checking instances.

6 Conclusions

We have introduced a novel algorithm for evaluating quantified boolean formulas. The
originality of our approach is twofold. On the one hand, a decisively new approach
to quantified reasoning is introduced. It amounts to reassess quantified reasoning as a
quantifier-free reasoning in a purposely designed symbolic representation. On the other
hand, numerous contributions to automated reasoning have been rearranged within a
coherent framework. This is both advantageous and instrumental in realizing the above
mentioned symbolic approach.

Our work is motivated by the outstanding potential of quantified reasoning in ap-
plications. Advances in decision procedures for this formalism are ardently expected,
as the only missing step toward making that language irresistibly attractive is to invent
more efficient decision procedures.

The conviction is growing among researchers that the expressive power of quantifi-
cation is not necessarily a shortcoming as far as decision procedures are concerned. In
this respect,sKizzo firstly succeeds to show how to retain both the expressive power
of quantification and the strength of all the known solving techniques for propositional
reasoning. Our preliminary experimental evaluation indeed yields remarkable results.
In addition, the more we realize how wide the room for improvement is, the more those
results sound promising.

Ours and other recent developments witness the youthfulness of the field. Notwith-
standing their early stage, these approaches show the seeds of success. Thus, the loom-
ing possibility of constructing quantified reasoners worhty of inheriting the amazing
success of SAT solvers in applications largely promotes further investigations along
sKizzo’s guidelines.
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